Nanostructural interface and strength of polymer composite scaffolds applied to intervertebral bone

Bankole I. Oladapo, Sikiru O Ismail, Victor Aderogba Adebiyi, Francis T Omigbodun, Mattew A Olawumi, David B Olawade

    Research output: Contribution to journalArticlepeer-review

    30 Citations (Scopus)
    39 Downloads (Pure)

    Abstract

    The pores of bone tissue that play an important part in bone regeneration can emulate the areas of nanoparticles from porous scaffolds. This work evaluated a novel designed and developed nanostructure surface of polyetheretherketone-reduced graphene oxide, calcium hydroxyapatite (PEEK-rGO-cHAp) composite scaffolds of four different lattice structures. The scaffolds were fabricated through fused deposition modeling (FDM), as rGO-cHAp composite was coated on PEEK. The composite scaffolds’ mechanical strength and surface microstructure were studied, using different nanostructure methods of unit cell homogenization and tensile test. The homogenization method for the four lattice structures was designed and analyzed to mimic spine bone structure. A new approach was introduced to homogenize the mechanical characteristics of a periodical lattice of 3D printing structures based on a semi-rigid frame unit cell. They were taking into consideration the impact of geometric approximation errors and joint tightening. A typical frame element with semi-rigid is integrated to assess combined stiffening effects in a discrete homogenization process. The analysis was performed by considering the fundamental unit cell as a scaffold that defined the periodic pattern. Also, this study created an avenue to examine and improve the interfacial bonding between PEEK and rGO-cHAp scaffolds for biocompatibility and degradability, using surface functionalization techniques. The purpose of this research is to compare the manufacturing processes in a model of intervertebral spacer, describe the characteristics of PEEK biomaterial, and explain some parameters related to its processing. In addition to its manufacturing part, a brief theory on the anatomy of the spine region was also presented. To establish its practical applications and benefits in tissue engineering, this study focused on the cervical region via a simulation approach using an anterior method.
    Original languageEnglish
    Article number127190
    JournalColloids and Surfaces A: Physicochemical and Engineering Aspects
    Volume627
    Early online date16 Jul 2021
    DOIs
    Publication statusPublished - 20 Oct 2021

    Keywords

    • Spine implant
    • Polyetheretherketone
    • Homogenisation
    • Lattice structures
    • PEEK-rGo-cHAp

    ASJC Scopus subject areas

    • Surfaces and Interfaces
    • Physical and Theoretical Chemistry
    • Colloid and Surface Chemistry

    Fingerprint

    Dive into the research topics of 'Nanostructural interface and strength of polymer composite scaffolds applied to intervertebral bone'. Together they form a unique fingerprint.

    Cite this