@inproceedings{e85f3508bb08411baca1eb29e61ca60a,
title = "Multi-precision convolutional neural networks on heterogeneous hardware",
abstract = "Fully binarised convolutional neural networks (CNNs) deliver very high inference performance using single-bit weights and activations, together with XNOR type operators for the kernel convolutions. Current research shows that full binarisation results in a degradation of accuracy and different approaches to tackle this issue are being investigated such as using more complex models as accuracy reduces. This paper proposes an alternative based on a multi-precision CNN frame-work that combines a binarised and a floating point CNN in a pipeline configuration deployed on heterogeneous hardware. The binarised CNN is mapped onto an FPGA device and used to perform inference over the whole input set while the floating point network is mapped onto a CPU device and performs re-inference only when the classification confidence level is low. A light-weight confidence mechanism enables a flexible trade-off between accuracy and throughput. To demonstrate the concept, we choose a Zynq 7020 device as the hardware target and show that the multi-precision network is able to increase the BNN accuracy from 78.5% to 82.5% and the CPU inference speed from 29.68 to 90.82 images/sec.",
keywords = "multi-precision, performance, Convolutional Neural Network, deep learning, heterogeneous, FPGA, ARM, CIFAR-10, inference",
author = "Sam Amiri and Mohammad Hosseinabady and Simon McIntosh-Smith and Jose Nunez-Yanez",
note = "{\textcopyright} 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. ; DATE - Design, Automation and Test in Europe Conference, DATE 2018 ; Conference date: 19-03-2018 Through 23-03-2018",
year = "2018",
month = mar,
doi = "10.23919/DATE.2018.8342046",
language = "English",
isbn = "978-3-9819263-1-6",
series = "Date Proceedings ",
publisher = "IEEE",
pages = "419--424",
booktitle = "Design, Automation & Test in Europe Conference & Exhibition (DATE)",
address = "United States",
}