TY - UNPB

T1 - Multi-Phase Locking Value

T2 - A Generalized Method for Determining Instantaneous Multi-frequency Phase Coupling

AU - Yang, Yuan

AU - Vasudeva, Bhavya

AU - Refai, Hazem H.

AU - He, Fei

PY - 2021/2/20

Y1 - 2021/2/20

N2 - Many physical, biological and neural systems behave as coupled oscillators, with characteristic phase coupling across different frequencies. Methods such as $n:m$ phase locking value and bi-phase locking value have previously been proposed to quantify phase coupling between two resonant frequencies (e.g. f, 2f/3) and across three frequencies (e.g. f_1, f_2, f_1+f_2), respectively. However, the existing phase coupling metrics have their limitations and limited applications. They cannot be used to detect or quantify phase coupling across multiple frequencies (e.g. f_1, f_2, f_3, f_4, f_1+f_2+f_3-f_4), or coupling that involves non-integer multiples of the frequencies (e.g. f_1, f_2, 2f_1/3+f_2/3). To address the gap, this paper proposes a generalized approach, named multi-phase locking value (M-PLV), for the quantification of various types of instantaneous multi-frequency phase coupling. Different from most instantaneous phase coupling metrics that measure the simultaneous phase coupling, the proposed M-PLV method also allows the detection of delayed phase coupling and the associated time lag between coupled oscillators. The M-PLV has been tested on cases where synthetic coupled signals are generated using white Gaussian signals, and a system comprised of multiple coupled Rossler oscillators. Results indicate that the M-PLV can provide a reliable estimation of the time window and frequency combination where the phase coupling is significant, as well as a precise determination of time lag in the case of delayed coupling. This method has the potential to become a powerful new tool for exploring phase coupling in complex nonlinear dynamic systems.

AB - Many physical, biological and neural systems behave as coupled oscillators, with characteristic phase coupling across different frequencies. Methods such as $n:m$ phase locking value and bi-phase locking value have previously been proposed to quantify phase coupling between two resonant frequencies (e.g. f, 2f/3) and across three frequencies (e.g. f_1, f_2, f_1+f_2), respectively. However, the existing phase coupling metrics have their limitations and limited applications. They cannot be used to detect or quantify phase coupling across multiple frequencies (e.g. f_1, f_2, f_3, f_4, f_1+f_2+f_3-f_4), or coupling that involves non-integer multiples of the frequencies (e.g. f_1, f_2, 2f_1/3+f_2/3). To address the gap, this paper proposes a generalized approach, named multi-phase locking value (M-PLV), for the quantification of various types of instantaneous multi-frequency phase coupling. Different from most instantaneous phase coupling metrics that measure the simultaneous phase coupling, the proposed M-PLV method also allows the detection of delayed phase coupling and the associated time lag between coupled oscillators. The M-PLV has been tested on cases where synthetic coupled signals are generated using white Gaussian signals, and a system comprised of multiple coupled Rossler oscillators. Results indicate that the M-PLV can provide a reliable estimation of the time window and frequency combination where the phase coupling is significant, as well as a precise determination of time lag in the case of delayed coupling. This method has the potential to become a powerful new tool for exploring phase coupling in complex nonlinear dynamic systems.

KW - q-bio.NC

KW - eess.SP

M3 - Preprint

BT - Multi-Phase Locking Value

PB - arXiv

ER -