Abstract
Peer to peer (P2P) energy trading as an emerging project of collaborative consumption has attracted interests and attention from recent research. Previous research has paid attention to business models, operation process, but neglected the motivations behind the mechanism of P2P energy trading. At the same time, how to design a peer to peer energy trading platform with selected features thus becomes vital in facilitating user trading experience. This study will use the natural language processing (NLP) method to assess characteristics that influence P2P energy trading. Notably, the data in this study will be collected from Twitter and reviews of Vandebron by using the latent Dirichlet process (LDA) model with Python.
Original language | English |
---|---|
Pages (from-to) | 189-202 |
Number of pages | 14 |
Journal | International journal of Chinese Culture and Management |
Volume | 5 |
Issue number | 3 |
Early online date | 16 Jun 2022 |
DOIs | |
Publication status | Published - 30 Jun 2022 |
Bibliographical note
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.This document is the author’s post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.
Keywords
- P2P energy trading
- collaborative consumption
- motivations
- natural language processing
- NLP
- latent Dirichlet process
- LDA
- customer reviews