Abstract
Over the last decade several computational models, and several types of model, have been developed to simulate the response of river systems to environmental change over time scales of decades to millennia: hydrological models, flood inundation models, channel morphology models, channel network models, models of river meandering and river braiding, alluvial stratigraphy models, and landscape evolution models. Each type of model simulates different aspects of a river's response to changes in environmental inputs such as climate and land-use - and to changes in these inputs. And each type of model has its abilities, advantages and limitations. We provide an overview of the different types of model that have been developed, and we evaluate their suitability for testing hypotheses about past environmental conditions, as well as for investigating the response of alluvial river systems to future environmental change. Additionally, we discuss the general issues and problems of computational modelling (e.g. scale and resolution, data availability, process representation, process parameterization, model calibration, non-linearity, and uncertainty), and the extent to which these hamper the usefulness of the models as a tool in environmental landscape studies. Finally, we identify trends in computational modelling research to outline possible future directions of the discipline.
Publisher Statement: NOTICE: this is the author’s version of a work that was accepted for publication in Earth-Science Reviews. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Earth-Science Reviews, [104, 1-3, (2011)] DOI: 10.1016/j.earscirev.2010.10.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
Original language | English |
---|---|
Pages (from-to) | 167-185 |
Number of pages | 19 |
Journal | Earth-Science Reviews |
Volume | 104 |
Issue number | 1-3 |
DOIs | |
Publication status | Published - Jan 2011 |
Externally published | Yes |
Keywords
- Computational modelling
- Environmental modelling
- Fluvial geomorphology
- Quaternary
- River systems
ASJC Scopus subject areas
- Earth and Planetary Sciences(all)