Abstract
Polymer-grafted nanoparticles can provide property profiles than cannot be obtained individually by polymers or nanoparticles. Here, we have studied the mixing–demixing transition of symmetric copolymer melts of polymer-grafted spherical nanoparticles by means of coarse-grained molecular dynamics
simulation and a theoretical mean-field model. We find that a larger size of nanoparticles leads to higher stability for given number of grafted chains and chain length reaching a point where demixing is not possible. Most importantly, our results suggest that there is a nontrivial dependence on the grafting
density in the case of intermediate particle size, where the steric interactions of the core particles are shielded by a growing effective attractive core of the tethered polymer chains. Our study elucidates the phase behaviour of polymer-grafted NPs anticipating that it will open new doors in the understanding
of these systems with implications in materials science and medicine.
simulation and a theoretical mean-field model. We find that a larger size of nanoparticles leads to higher stability for given number of grafted chains and chain length reaching a point where demixing is not possible. Most importantly, our results suggest that there is a nontrivial dependence on the grafting
density in the case of intermediate particle size, where the steric interactions of the core particles are shielded by a growing effective attractive core of the tethered polymer chains. Our study elucidates the phase behaviour of polymer-grafted NPs anticipating that it will open new doors in the understanding
of these systems with implications in materials science and medicine.
Original language | English |
---|---|
Pages (from-to) | 703-708 |
Number of pages | 6 |
Journal | Soft Matter |
Volume | 16 |
Issue number | 3 |
Early online date | 26 Nov 2019 |
DOIs | |
Publication status | Published - 22 Jan 2020 |
ASJC Scopus subject areas
- Chemistry(all)
- Condensed Matter Physics