Mineralogy affects prokaryotic community composition in an acidic metal mine

Laura C. Kelly, Damian W. Rivett, Eva Pakostova, Simon Creer, Tom Cotterell, D. Barrie Johnson

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
28 Downloads (Pure)

Abstract

The microbial ecology of acidic mine and sulfide cave ecosystems is well characterised with respect to aquatic communities, typically revealing low taxonomic complexity and dominance by a relatively limited number of cosmopolitan acidophilic bacterial and archaeal taxa. Whilst pH, temperature, and geochemistry are recognised drivers of diversity in these ecosystems, the specific question of a possible influence of substratum mineralogy on microbial community composition remains unanswered. Here we address this void, using 81subterranean mineral samples from a low temperature abandoned, acidic, sulfide ore mine system at Mynydd Parys (Parys Mountain in English), Wales, UK. Four primary and 15 secondary minerals were identified via x-ray diffraction, each sample containing a maximum of five and an average of two minerals. The mineralogy of primary (e.g. pyrite and quartz) and secondary (e.g. melanterite and pisanite) minerals was significantly correlated with prokaryotic community structure at multiple taxonomic levels, implying that the mineralosphere effect reported in less extreme terrestrial environments is also implicated in driving prokaryotic community composition in extremely acidic, base metal-bearing sulfide mineralisation at Mynydd Parys. Twenty phyla were identified, nine of which were abundant (mean relative abundance >1%). While taxa characteristic of acidic mines were detected, for example Leptospirillum (phylum Nitrospirae), Acidithiobacillus (phylum Proteobacteria), Sulfobacillus (phylum Firmicutes) and Ferroplasma (phylum Euryarchaeota), their abundance in individual samples was highly variable. Indeed, in the majority of the 81 samples investigated the abundance of these and other typical acidic mine taxa was low, with 25% of samples devoid of sequences from recognised acidic mine taxa. Most notable amongst the bacterial taxa not previously reported in such environments were the recently cultivated Muribaculaceae family (phylum acteroidetes), which often dominated Mynydd Parys samples regardless of their mineralogical content. Our results pose further questions regarding the mechanisms by which taxa not previously reported in such extreme environments appear to survive in Mynydd Parys, opening up research pathways for exploring the biodiversity drivers underlying microbial community composition and function in extremely acidic mine environments.
Original languageEnglish
Article number127257
Number of pages10
JournalMicrobiological Research
Volume266
Early online date12 Nov 2022
DOIs
Publication statusPublished - Jan 2023

Bibliographical note

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Keywords

  • Mineralogy
  • Muribaculaceae
  • Acidic mine
  • Acidophiles
  • Sulfide

Fingerprint

Dive into the research topics of 'Mineralogy affects prokaryotic community composition in an acidic metal mine'. Together they form a unique fingerprint.

Cite this