Abstract
Rechargeable magnesium ion batteries have recently received considerable attention as an alternative to Li- or Na-ion batteries. Understanding defects and ion transport is a key step in designing high performance electrode materials for Mg-ion batteries. Here we present a classical potential-based atomistic simulation study of defects, dopants and Mg-ion transport in Mg6MnO8. The formation of the Mg–Mn anti-site defect cluster is calculated to be the lowest energy process (1.73 eV/defect). The Mg Frenkel is calculated to be the second most favourable intrinsic defect and its formation energy is 2.84 eV/defect. A three-dimensional long-range Mg-ion migration path with overall activation energy of 0.82 eV is observed, suggesting that the diffusion of Mg-ions in this material is moderate. Substitutional doping of Ga on the Mn site can increase the capacity of this material in the form of Mg interstitials. The most energetically favourable isovalent dopant for Mg is found to be Fe. Interestingly, Si and Ge exhibit exoergic solution enthalpy for doping on the Mn site, requiring experimental verification.
Original language | English |
---|---|
Article number | 3213 |
Number of pages | 9 |
Journal | Energies |
Volume | 12 |
Issue number | 17 |
DOIs | |
Publication status | Published - 21 Aug 2019 |
Funder
European Union’s H2020 Programme under Grant Agreementno 824072–HARVESTORE.
Keywords
- Defects
- Dopants
- Mg MnO
- Mg-ion diffusion
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- Energy Engineering and Power Technology
- Energy (miscellaneous)
- Control and Optimization
- Electrical and Electronic Engineering