Mechanical and leaching characterisation of impact-absorbing rubberised asphalts for urban pavements

Christina Makoundou, Alireza Fathollahi, Svein Kleiven, Stephen J Coupe, Cesare Sangiorgi

Research output: Contribution to journalArticlepeer-review

30 Downloads (Pure)


A new impact-absorbing material is being developed to protect vulnerable road users in urban areas and has been produced and tested, mechanically and environmentally in the laboratory. The main constituent of this innovative material is the rubber recycled from end-of-life tyres to foster a circular use of resources and exploit rubber’s elastic properties. The study aims to provide a complete Uniaxial Compression Test (UCT) and leaching analysis of the material to propose and optimise a mix that is mechanically sound, durable, and respectful of the environment, in view of in-situ applications. Therefore, the UCT and Dynamic Surface Leaching Test (DSLT) were carried out on rubberised asphalt specimens with different mix designs. The 64 days cumulative concentrations of leached heavy metals and trace elements from unit surface of specimens were calculated and quantified, according to the CEN/TS 16637 standard. In parallel, thanks to a specific mechanical characterisation, compressive stress–strain curves were obtained, and the relaxation and elastic modulus were evaluated. The results from the compression tests showed that the A-mixes have the best elastic and absorbing behaviour, especially those made with an SBS-modified bituminous emulsion (A4). The results from DSLT showed that the cumulative concentration of released elements, per unit surface of specimens were lower than the Dutch Soil Quality Decree (SQD) thresholds, taken as a reference. The low and early release of leachant observed for the mixtures, especially A4 as the most promising one, leave the possibility to handle the leaching with several solutions, including rubber coating treatment or water washing before their incorporation into the mix to limit and prevent their leaching while permitting very high injury reduction performances.
Original languageEnglish
Article number55
Number of pages19
JournalMaterials and Structures
Issue number3
Early online date20 Mar 2023
Publication statusPublished - Apr 2023

Bibliographical note

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit


  • Crumb rubber
  • Rubberised asphalt mixtures
  • Cold and warm mixtures
  • Impact-absorbing pavement
  • Uniaxial compression tests
  • Dynamic surface leaching


Dive into the research topics of 'Mechanical and leaching characterisation of impact-absorbing rubberised asphalts for urban pavements'. Together they form a unique fingerprint.

Cite this