Abstract
We tackle the question of how anisotropy in flows subject to background rotation favours structures elongated along the rotation axis, especially in turbulent flows. A new, wave-free mechanism is identified that challenges the current understanding of the process. Inertial waves propagating near the rotation axis (Staplehurst et al. J. Fluid Mech., vol. 598, 2008, pp. 81-105; Yarom & Sharon, Nat. Phys., vol. 10(7), 2014, pp. 510-514) are generally accepted as the most efficient mechanism to transport energy anisotropically. They have been shown to transfer energy to large anisotropic, columnar structures. Nevertheless, they cannot account for the formation of simpler steady anisotropic phenomena such as Taylor columns. Here, we experimentally show that more than one mechanism involving the Coriolis force may promote anisotropy. In particular, in the limit of fast rotation, that is at low Rossby number, anisotropy favouring the direction of rotation of the average of a turbulent flow arises neither because of inertial waves nor following the same mechanism as in steady Taylor columns, but from an interplay between the Coriolis force and average advection.
Original language | English |
---|---|
Article number | A37 |
Number of pages | 18 |
Journal | Journal of Fluid Mechanics |
Volume | 889 |
Early online date | 28 Feb 2020 |
DOIs | |
Publication status | Published - 25 Apr 2020 |
Bibliographical note
This is an Open Access article, distributed under the terms of the Creative Commons Attributionlicence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited doi:10.1017/jfm.2020.109
Funder
Engineering and Physical Sciences Research Council (grant number GR/N64519/01) for the manufacture of the rotating turntable facility and B. Teaca for computational resources used in processing experimental data. A.P. acknowledges support from the Royal Society under the Wolfson Research Merit Award Scheme (Grant reference WM140032).Keywords
- rotating turbulence
- waves in rotating fluids
ASJC Scopus subject areas
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
Fingerprint
Dive into the research topics of 'Mean flow anisotropy without waves in rotating turbulence'. Together they form a unique fingerprint.Profiles
-
Alban Potherat
- Research Centre for Fluid and Complex Systems - Centre Director
Person: Professional Services