Magnetic-field dependence of transport in normal and Andreev billiards: A classical interpretation of the averaged quantum behavior

Nikolaos G. Fytas, F. K. Diakonos, P. Schmelcher, M. Scheid, A. Lassl, K. Richter, G. Fagas

    Research output: Contribution to journalArticle

    10 Citations (Scopus)

    Abstract

    We perform a comparative study of the quantum and classical transport probabilities of low-energy quasiparticles ballistically traversing normal and Andreev two-dimensional open cavities with a Sinai-billiard shape. We focus on the dependence of the transport on the strength of an applied magnetic field B. With increasing field strength the classical dynamics changes from mixed to regular phase space. Averaging out the quantum fluctuations, we find an excellent agreement between the quantum and classical transport coefficients in the complete range of field strengths. This allows an overall description of the nonmonotonic behavior of the average magnetoconductance in terms of the corresponding classical trajectories, thus, establishing a basic tool useful in the design and analysis of experiments.
    Original languageEnglish
    Article number085336
    JournalPhysical Review B
    Volume72
    DOIs
    Publication statusPublished - 22 Aug 2005

    Bibliographical note

    The full text is currently unavailable on the repository.

    Fingerprint

    Dive into the research topics of 'Magnetic-field dependence of transport in normal and Andreev billiards: A classical interpretation of the averaged quantum behavior'. Together they form a unique fingerprint.

    Cite this