LES of turbulent lifted CH4/H2 flames: Preferential diffusion effects

Ebrahim Abtahizadeh, J. van Oijen, R. Bastiaans, P. de Goey

Research output: Chapter in Book/Report/Conference proceedingConference proceeding


This paper reports on numerical investigation of preferential diffusion effects on flame stabilization of turbulent lifted flames. The experimental test case is the Delft JHC burner to study Mild combustion; a clean combustion concept. In this burner, methane based fuel has been enriched from 0 to 25% of H2 . Since the main stabilization mechanism of these turbulent flames is autoignition, numerical models should account for this mechanism. Addition of hydrogen makes modeling even more challenging due to its preferential diffusion effects. In this study, first, a novel numerical model is developed based on the Flamelet Generated Manifolds (FGM) to account for preferential diffusion effects in autoignition. Afterwards, the developed FGM approach is implemented in LES of the H2 enriched turbulent lifted jet flames. Main features of these turbulent lifted flames such as the formation of ignition kernels and stabilization mechanisms are analyzed and compared with measurements of OH chemiluminescence.
Original languageEnglish
Title of host publicationUnknown Host Publication
Publication statusPublished - 2014
EventSymposium (Japanese) on Combustion - Okayama, Japan
Duration: 3 Dec 20145 Dec 2014


ConferenceSymposium (Japanese) on Combustion

Bibliographical note

The full text is currently unavailable on the repository.


  • Large Eddy Simulation
  • Flamelet Generated Manifolds
  • preferential diffusion effects
  • flame stabilization
  • autoignition


Dive into the research topics of 'LES of turbulent lifted CH4/H2 flames: Preferential diffusion effects'. Together they form a unique fingerprint.

Cite this