Learning-Assisted Optimization in Mobile Crowd Sensing: A Survey

Jiangtao Wang, Yasha Wang, Daqing Zhang, Jorge Goncalves, Denzil Ferreira, Aku Visuri, Sen Ma

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)

Abstract

Mobile crowd sensing (MCS) is a relatively new paradigm for collecting real-time and location-dependent urban sensing data. Given its applications, it is crucial to optimize the MCS process with the objective of maximizing the sensing quality and minimizing the sensing cost. While earlier studies mainly tackle this issue by designing different combinatorial optimization algorithms, there is a new trend to further optimize MCS by integrating learning techniques to extract knowledge, such as participants' behavioral patterns or sensing data correlation. In this paper, we perform an extensive literature review of learning-assisted optimization approaches in MCS. Specifically, from the perspective of the participant and the task, we organize the existing work into a conceptual framework, present different learning and optimization methods, and describe their evaluation. Furthermore, we discuss how different techniques can be combined to form a complete solution. In the end, we point out existing limitations, which can inform and guide future research directions.
Original languageEnglish
Pages (from-to)15 - 22
Number of pages8
JournalIEEE Transactions on Industrial Informatics
Volume15
Issue number1
Early online date4 Sept 2018
DOIs
Publication statusPublished - 1 Jan 2019
Externally publishedYes

Keywords

  • Learning
  • mobile crowd sensing
  • optimization

Fingerprint

Dive into the research topics of 'Learning-Assisted Optimization in Mobile Crowd Sensing: A Survey'. Together they form a unique fingerprint.

Cite this