Kinetics, isotherm, and optimization of the hexavalent chromium removal from aqueous solution by a magnetic nanobiosorbent

Majid Daneshvar, Mohammad Raouf Hosseini

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)

Abstract

Sorption is the most effective approach to the treatment of acid mine drainage (AMD) and wastewaters, but the removal of the adsorbents from water has always been a challenging problem which may be resolved by using magnetic separation. In this work, a magnetic bioadsorbent was prepared using low cost and high-performance sources and applied in Cr(VI) removal from a synthetic solution. Initially, magnetite nanoparticles were synthesized from iron boring scraps by chemical co-precipitation method. Results of dynamic light scattering (DLS) and vibrating sample magnetometry (VSM) analyses showed that the synthesized nanoparticles were around 40 nm in size and had a significant magnetization. Then, the magnetite nanoparticles were attached to the dead and alkaline activated biomass of Aspergillus niger. Central composite design (CCD) was applied to determine the optimal condition of Cr(VI) adsorption on the produced magnetic nanobiocomposite. The maximum chromium removal (~ 92%) was achieved at pH 5.8, Cr concentration 23.4 mg/l, adsorbent dose 3.72 g/l, agitation rate 300 rpm, and duration 11 min. Kinetic studies showed that regardless of temperature, the process was controlled by mass transfer and intraparticle diffusion with an equilibrium constant of 0.74 mg/g min1/2 at 40 °C. Also, the adsorption isotherms followed the Temkin model, which indicated the physical adsorption of Cr(VI) on the produced sorbent. Therefore, the magnetic nanobiocomposite has a perfect ability to be used as the chromium adsorbent and can be collected by a low external magnetic field. [Figure not available: see fulltext.].

Original languageEnglish
Pages (from-to)28654-28666
Number of pages13
JournalEnvironmental Science and Pollution Research
Volume25
Issue number28
Early online date9 Aug 2018
DOIs
Publication statusPublished - 1 Oct 2018
Externally publishedYes

Keywords

  • Adsorption
  • Fungus
  • Hexavalent chromium
  • Kinetics
  • Magnetite nanoparticles
  • Optimization

ASJC Scopus subject areas

  • Environmental Chemistry
  • Pollution
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Kinetics, isotherm, and optimization of the hexavalent chromium removal from aqueous solution by a magnetic nanobiosorbent'. Together they form a unique fingerprint.

Cite this