KDamping: A Stiffness Based Vibration Absorption Concept

I.A. Antoniadis, Stratis Kanarachos, K. Gryllias, I. Sapountzakis

Research output: Contribution to journalArticlepeer-review

81 Citations (Scopus)
118 Downloads (Pure)

Abstract

The KDamper is a novel passive vibration isolation and damping concept, based essentially on the optimal combination of appropriate stiffness elements, which include a negative stiffness element. The KDamper concept does not require any reduction in the overall structural stiffness, thus overcoming the corresponding inherent disadvantage of the “Quazi Zero Stiffness” (QZS) isolators, which require a drastic reduction of the structure load bearing capacity. Compared to the traditional Tuned Mass damper (TMD), the KDamper can achieve better isolation characteristics, without the need of additional heavy masses, as in the case of TMD. Contrary to the TMD and the inerter, the KDamper substitutes the necessary high inertial forces of the added mass by the stiffness force of the negative stiffness element. Among others, this can provide comparative advantages in the very low frequency range. The paper proceeds to a systematic analytical approach for the optimal design and selection of the parameters of the KDamper, following exactly the classical approach used for the design of the TMD. It is thus theoretically proved, that the KDamper can inherently offer far better isolation and damping properties than the TMD. Moreover, since the isolation and damping properties of the KD essentially result from the stiffness elements of the system, further technological advantages can emerge, in terms of weight, complexity and reliability. A simple vertical vibration isolation example is provided, implemented by a set of optimally combined conventional linear springs. The system is designed so that the system presents an adequate static load bearing capacity, while the transfer function of the system is below unity in the entire frequency range. Further insight is provided to the physical behaviour of the system, indicating a proper phase difference between the positive and the negative stiffness elastic forces. This fact ensures that an adequate level of elastic forces exists throughout the entire frequency range, able to counteract the inertial and the external excitation forces, while the damping forces and the inertia forces of the additional mass remain minimal in the entire frequency range, including the natural frequencies.
Original languageEnglish
JournalJournal of Vibration and Control
VolumeIn press
DOIs
Publication statusPublished - 2016

Keywords

  • KDamper
  • Vibration Isolation
  • Negative Stiffness

Fingerprint

Dive into the research topics of 'KDamping: A Stiffness Based Vibration Absorption Concept'. Together they form a unique fingerprint.

Cite this