Involvement of mitogen activated kinase kinase 7 intracellular signalling pathway in Sunitinib-induced cardiotoxicity

Hardip Sandhu, Samantha Cooper, Afthab Hussain, Christopher Mee, Helen Maddock

Research output: Contribution to journalArticle

4 Citations (Scopus)
15 Downloads (Pure)

Abstract

The tyrosine kinase inhibitor Sunitinib is used to treat cancer and is linked to severe adverse cardiovascular events. Mitogen activated kinase kinase 7 (MKK7) is involved in the development of cardiac injury and is a component of the c-Jun N-terminal kinase (JNK) signal transduction pathway. Apoptosis signal-regulating kinase 1 (ASK1) is the upstream activator of MKK7 and is specifically inhibited by 2,7-dihydro-2,7-dioxo-3H-naphtho[1,2,3-de]quinoline-1-carboxylic acid ethyl ester (NQDI-1). This study investigates the role of ASK1, MKK7 and JNK during Sunitinib-induced cardiotoxicity.

Infarct size were measured in isolated male Sprague-Dawley rat Langendorff perfused hearts treated for 125 min with Sunitinib in the presence and absence of NQDI-1. Left ventricular cardiac tissue samples were analysed by qRT-PCR for MKK7 mRNA expression and cardiotoxicity associated microRNAs (miR-1, miR-27a, miR-133a and miR-133b) or Western blot analysis to measure ASK1/MKK7/JNK phosphorylation.

Administration of Sunitinib (1 µM) during Langendorff perfusion resulted in increased infarct size, increased miR-133a expression, and decreased phosphorylation of the ASK1/MKK7/JNK pathway compared to control. Co-administration of NQDI-1 (2.5 µM) attenuated the increased Sunitinib-induced infarct size, reversed miR-133a expression and restored phosphorylated levels of ASK1/MKK7/JNK. These findings suggest that the ASK1/MKK7/JNK intracellular signalling pathway is important in Sunitinib-induced cardiotoxicity. The anti-cancer properties of Sunitinib were also assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay. Sunitinib significantly decreased the cell viability of human acute myeloid leukemia 60 cell line (HL60). The combination of Sunitinib (1 nM - 10 µM) with NQDI-1 (2.5 µM) enhanced the cancer-fighting properties of Sunitinib. Investigations into the ASK1/MKK7/JNK transduction pathway could lead to development of cardioprotective adjunct therapy, which could prevent Sunitinib-induced cardiac injury.
Original languageEnglish
Pages (from-to)72-83
JournalToxicology
Volume394
Early online date14 Dec 2017
DOIs
Publication statusPublished - 1 Feb 2018

Fingerprint

Mitogens
Phosphotransferases
MAP Kinase Kinase Kinase 5
sunitinib
Cardiotoxicity
Phosphorylation
Cells
Cell Survival
Neoplasms
Signal transduction

Keywords

  • Drug-induced cardiotoxicity
  • Tyrosine kinase inhibitor
  • Sunitinib
  • Mitogen activated kinase kinase 7
  • Novel adjunct therapy
  • ASK1 inhibitor 2
  • 7-dihydro-2
  • 7-dioxo-3H-naphtho[1,2,3-de]quinoline-1-carboxylic acid ethyl ester

Cite this

Involvement of mitogen activated kinase kinase 7 intracellular signalling pathway in Sunitinib-induced cardiotoxicity. / Sandhu, Hardip; Cooper, Samantha; Hussain, Afthab; Mee, Christopher; Maddock, Helen.

In: Toxicology, Vol. 394, 01.02.2018, p. 72-83.

Research output: Contribution to journalArticle

@article{7e60dc1454dc47ab8c9563091f9a17cd,
title = "Involvement of mitogen activated kinase kinase 7 intracellular signalling pathway in Sunitinib-induced cardiotoxicity",
abstract = "The tyrosine kinase inhibitor Sunitinib is used to treat cancer and is linked to severe adverse cardiovascular events. Mitogen activated kinase kinase 7 (MKK7) is involved in the development of cardiac injury and is a component of the c-Jun N-terminal kinase (JNK) signal transduction pathway. Apoptosis signal-regulating kinase 1 (ASK1) is the upstream activator of MKK7 and is specifically inhibited by 2,7-dihydro-2,7-dioxo-3H-naphtho[1,2,3-de]quinoline-1-carboxylic acid ethyl ester (NQDI-1). This study investigates the role of ASK1, MKK7 and JNK during Sunitinib-induced cardiotoxicity.Infarct size were measured in isolated male Sprague-Dawley rat Langendorff perfused hearts treated for 125 min with Sunitinib in the presence and absence of NQDI-1. Left ventricular cardiac tissue samples were analysed by qRT-PCR for MKK7 mRNA expression and cardiotoxicity associated microRNAs (miR-1, miR-27a, miR-133a and miR-133b) or Western blot analysis to measure ASK1/MKK7/JNK phosphorylation. Administration of Sunitinib (1 µM) during Langendorff perfusion resulted in increased infarct size, increased miR-133a expression, and decreased phosphorylation of the ASK1/MKK7/JNK pathway compared to control. Co-administration of NQDI-1 (2.5 µM) attenuated the increased Sunitinib-induced infarct size, reversed miR-133a expression and restored phosphorylated levels of ASK1/MKK7/JNK. These findings suggest that the ASK1/MKK7/JNK intracellular signalling pathway is important in Sunitinib-induced cardiotoxicity. The anti-cancer properties of Sunitinib were also assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay. Sunitinib significantly decreased the cell viability of human acute myeloid leukemia 60 cell line (HL60). The combination of Sunitinib (1 nM - 10 µM) with NQDI-1 (2.5 µM) enhanced the cancer-fighting properties of Sunitinib. Investigations into the ASK1/MKK7/JNK transduction pathway could lead to development of cardioprotective adjunct therapy, which could prevent Sunitinib-induced cardiac injury.",
keywords = "Drug-induced cardiotoxicity, Tyrosine kinase inhibitor, Sunitinib, Mitogen activated kinase kinase 7, Novel adjunct therapy, ASK1 inhibitor 2, 7-dihydro-2, 7-dioxo-3H-naphtho[1,2,3-de]quinoline-1-carboxylic acid ethyl ester",
author = "Hardip Sandhu and Samantha Cooper and Afthab Hussain and Christopher Mee and Helen Maddock",
year = "2018",
month = "2",
day = "1",
doi = "10.1016/j.tox.2017.12.005",
language = "English",
volume = "394",
pages = "72--83",
journal = "Toxicology",
issn = "0300-483X",
publisher = "Elsevier",

}

TY - JOUR

T1 - Involvement of mitogen activated kinase kinase 7 intracellular signalling pathway in Sunitinib-induced cardiotoxicity

AU - Sandhu, Hardip

AU - Cooper, Samantha

AU - Hussain, Afthab

AU - Mee, Christopher

AU - Maddock, Helen

PY - 2018/2/1

Y1 - 2018/2/1

N2 - The tyrosine kinase inhibitor Sunitinib is used to treat cancer and is linked to severe adverse cardiovascular events. Mitogen activated kinase kinase 7 (MKK7) is involved in the development of cardiac injury and is a component of the c-Jun N-terminal kinase (JNK) signal transduction pathway. Apoptosis signal-regulating kinase 1 (ASK1) is the upstream activator of MKK7 and is specifically inhibited by 2,7-dihydro-2,7-dioxo-3H-naphtho[1,2,3-de]quinoline-1-carboxylic acid ethyl ester (NQDI-1). This study investigates the role of ASK1, MKK7 and JNK during Sunitinib-induced cardiotoxicity.Infarct size were measured in isolated male Sprague-Dawley rat Langendorff perfused hearts treated for 125 min with Sunitinib in the presence and absence of NQDI-1. Left ventricular cardiac tissue samples were analysed by qRT-PCR for MKK7 mRNA expression and cardiotoxicity associated microRNAs (miR-1, miR-27a, miR-133a and miR-133b) or Western blot analysis to measure ASK1/MKK7/JNK phosphorylation. Administration of Sunitinib (1 µM) during Langendorff perfusion resulted in increased infarct size, increased miR-133a expression, and decreased phosphorylation of the ASK1/MKK7/JNK pathway compared to control. Co-administration of NQDI-1 (2.5 µM) attenuated the increased Sunitinib-induced infarct size, reversed miR-133a expression and restored phosphorylated levels of ASK1/MKK7/JNK. These findings suggest that the ASK1/MKK7/JNK intracellular signalling pathway is important in Sunitinib-induced cardiotoxicity. The anti-cancer properties of Sunitinib were also assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay. Sunitinib significantly decreased the cell viability of human acute myeloid leukemia 60 cell line (HL60). The combination of Sunitinib (1 nM - 10 µM) with NQDI-1 (2.5 µM) enhanced the cancer-fighting properties of Sunitinib. Investigations into the ASK1/MKK7/JNK transduction pathway could lead to development of cardioprotective adjunct therapy, which could prevent Sunitinib-induced cardiac injury.

AB - The tyrosine kinase inhibitor Sunitinib is used to treat cancer and is linked to severe adverse cardiovascular events. Mitogen activated kinase kinase 7 (MKK7) is involved in the development of cardiac injury and is a component of the c-Jun N-terminal kinase (JNK) signal transduction pathway. Apoptosis signal-regulating kinase 1 (ASK1) is the upstream activator of MKK7 and is specifically inhibited by 2,7-dihydro-2,7-dioxo-3H-naphtho[1,2,3-de]quinoline-1-carboxylic acid ethyl ester (NQDI-1). This study investigates the role of ASK1, MKK7 and JNK during Sunitinib-induced cardiotoxicity.Infarct size were measured in isolated male Sprague-Dawley rat Langendorff perfused hearts treated for 125 min with Sunitinib in the presence and absence of NQDI-1. Left ventricular cardiac tissue samples were analysed by qRT-PCR for MKK7 mRNA expression and cardiotoxicity associated microRNAs (miR-1, miR-27a, miR-133a and miR-133b) or Western blot analysis to measure ASK1/MKK7/JNK phosphorylation. Administration of Sunitinib (1 µM) during Langendorff perfusion resulted in increased infarct size, increased miR-133a expression, and decreased phosphorylation of the ASK1/MKK7/JNK pathway compared to control. Co-administration of NQDI-1 (2.5 µM) attenuated the increased Sunitinib-induced infarct size, reversed miR-133a expression and restored phosphorylated levels of ASK1/MKK7/JNK. These findings suggest that the ASK1/MKK7/JNK intracellular signalling pathway is important in Sunitinib-induced cardiotoxicity. The anti-cancer properties of Sunitinib were also assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay. Sunitinib significantly decreased the cell viability of human acute myeloid leukemia 60 cell line (HL60). The combination of Sunitinib (1 nM - 10 µM) with NQDI-1 (2.5 µM) enhanced the cancer-fighting properties of Sunitinib. Investigations into the ASK1/MKK7/JNK transduction pathway could lead to development of cardioprotective adjunct therapy, which could prevent Sunitinib-induced cardiac injury.

KW - Drug-induced cardiotoxicity

KW - Tyrosine kinase inhibitor

KW - Sunitinib

KW - Mitogen activated kinase kinase 7

KW - Novel adjunct therapy

KW - ASK1 inhibitor 2

KW - 7-dihydro-2

KW - 7-dioxo-3H-naphtho[1,2,3-de]quinoline-1-carboxylic acid ethyl ester

U2 - 10.1016/j.tox.2017.12.005

DO - 10.1016/j.tox.2017.12.005

M3 - Article

VL - 394

SP - 72

EP - 83

JO - Toxicology

JF - Toxicology

SN - 0300-483X

ER -