Abstract
Despite significant progress made in the research conducted to understand the morphodynamics
of meandering rivers using computer models, a number of challenges and limitations remain with respect to
simulating lateral river channel adjustments. In particular, some biophysical processes critical to bank erosion
(e.g. related to soil and vegetation) are often neglected or oversimplified, proxy variables such as flow velocity
are used to predict lateral migration rates, non-physical assumptions are frequently made to simulate channel
cut offs, and channel and floodplain processes are commonly studied separately. The objective of this paper
is not to address all of these issues, but to present a new geotechnical model that was integrated into a
numerical morphodynamic model to include lateral erosion due to mass wasting. The model accounts for
floodplain morphology and river bank hydrology, without compromising computational efficiency. The integrated
geotechnical component includes a set of physics-based rules to quantify slope stability across the
simulation domain. It is managed by a fully configurable universal genetic algorithm with tournament selection
to efficiently calculate the spatial extent of block slumps whose slip surface profile is allowed to be planar,
circular or irregular. This module is compatible with any type of mesh structure, making it suitable for
the investigation of the dynamics of single- and multi-threaded river channels. Following bank failure, the fine
material is assumed to be immediately entrained by the flow, whereas the coarse fraction is deposited
along the formally unstable slope at the friction angle of the bank material. By keeping track of floodplain topography,
and not solely of channel morphology, the model allows for preferential pathways to develop on
the valley floor, which may affect both the direction and rate of channel migration.
Original language | English |
---|---|
Title of host publication | River Flow 2014 |
Editors | Anton J. Schleiss, Giovanni de Cesare, Mario J. Franca, Michael Pfister |
Place of Publication | London, UK |
Publisher | CRC Press, Taylor & Francis Group |
Pages | 1127-1134 |
Number of pages | 7 |
ISBN (Electronic) | 9781498704427 |
ISBN (Print) | 9781138026742 |
Publication status | Published - 12 Aug 2014 |
Event | International Conference on Fluvial Hydraulics 'River Flow 2014' - Lausanne, Switzerland Duration: 3 Sept 2014 → 5 Sept 2014 |
Conference
Conference | International Conference on Fluvial Hydraulics 'River Flow 2014' |
---|---|
Country/Territory | Switzerland |
City | Lausanne |
Period | 3/09/14 → 5/09/14 |
Fingerprint
Dive into the research topics of 'Integration of a geotechnical model within a morphodynamic model to investigate river meandering processes'. Together they form a unique fingerprint.Profiles
-
Marco Van De Wiel
- Centre for Agroecology, Water and Resilience - Professor
Person: Teaching and Research