Abstract
A cascaded adsorption cooling system with an integrated evaporator/condenser can produce low temperature cooling, using waste heat sources. The choice of the working pair in such a system affects the system’s performance when driven by low temperature waste heat sources, which can be as low as 70 °C. This paper investigates the performance of various adsorbent/refrigerant working pairs in a cascaded adsorption system with an integrated evaporator/condenser using Simulink/MATLAB software. The cascaded system consists of two pairs of adsorber beds, a condenser, an evaporator and an integrated condenser/evaporator heat exchanger, forming upper and bottoming cycles. Five combinations of working pairs were investigated: ATO/ethanol + Maxsorb/R507A; Maxsorb/R134a + Maxsorb/propane; ATO/Ethanol + Maxsorb/propane; ATO/ethanol + AC-35/methanol; and Maxsorb/R134a + Maxsorb/R507A. The latter combination was used for validation and as a reference combination for assessing the performance of the investigated working pairs in terms of COP and cooling capacity. The results showed that the Maxsorb/R134a + Maxsorb/propane combination gives a higher COP compared to the reference combination, with up to 30.0% and 30.1% for the COP and cooling capacity, respectively; while ATO/ethanol + AC-35/methanol produces a similar performance to the reference case but uses natural refrigerants with low global warming potential and low cost adsorbent materials.
Original language | English |
---|---|
Pages (from-to) | 2117-2126 |
Number of pages | 10 |
Journal | Applied Energy |
Volume | 185 |
Issue number | 2 |
Early online date | 12 Feb 2016 |
DOIs | |
Publication status | Published - Jan 2017 |
Bibliographical note
The full text is not available on the repository.This article is currently in press. The full citation details will be uploaded when available.
Keywords
- Adsorption
- Cascading
- Working pairs
- Freezing
- Simulink