Abstract
This paper studies how to improve the efficiency of a new system for catchment, pretreatment, and treatment of runoff water (SCPT). This system is integrated into an urban sustainable gravity settler that can decrease diffusive pollution. This study provides important advantages for the ecosystem by improving new sustainable drainage to clean runoff water. In this paper, an investigation methodology known as hybrid engineering (HE) was used. HE combines experimental tests and numerical simulations, both of them conducted on a 1:4-scale prototype. In this study, numerical simulations by the finite-volume method (FVM) and experimental tests by particle image velocimetry (PIV) were compared. A strong correlation between the numerical and experimental analysis was found. Next, the efficiency of the SCPT was optimized by design of experiments (DOE). Analysis of experimental and numerical results and their comparison are presented in this paper.
Original language | English |
---|---|
Journal | Journal of Irrigation and Drainage Engineering |
Volume | 140 |
Issue number | 8 |
Early online date | 23 Apr 2014 |
DOIs | |
Publication status | Published - Aug 2014 |
Externally published | Yes |
Bibliographical note
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.Keywords
- Catchments
- Comparative studies
- Numerical analysis
- Runoff
- Water treatment
- Numerical models
- Computational fluid dynamics technique
- Water use