Abstract
Doped ceria is an important electrolyte for solid oxide fuel cell applications. Molecular dynamics simulations have been used to investigate the impact of uniaxial strain along the directions and rare-earth doping (Yb, Er, Ho, Dy, Gd, Sm, Nd, and La) on oxygen diffusion. We introduce a new potential model that is able to describe the thermal expansion and elastic properties of ceria to give excellent agreement with experimental data. We calculate the activation energy of oxygen migration in the temperature range 900-1900K for both unstrained and rare-earth doped ceria systems under tensile strain. Uniaxial strain has a considerable effect in lowering the activation energies of oxygen migration. A more pronounced increase in oxygen diffusivities is predicted at the lower end of the temperature range for all the dopants considered.
Original language | English |
---|---|
Pages (from-to) | 6068 |
Journal | Scientific Reports |
Volume | 4 |
DOIs | |
Publication status | Published - 14 Aug 2014 |
Bibliographical note
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/Keywords
- doped ceria
- solid oxide fuel cells
- uniaxial strain
- structure of solids and liquids
- fuel cells