TY - JOUR
T1 - Hydrocarbon detection with metal oxide semiconducting gas sensors modified by overlayer or admixture of zeolites Na-A, H-Y and H-ZSM-5
AU - Tarttelin Hernandez, Paula
AU - Hailes, Stephen
AU - Parkin, Ivan
PY - 2017/4
Y1 - 2017/4
N2 - A control thick-film SnO2 gas sensor was modified with zeolites holding LTA, FAU and MFI frameworks using two different approaches to integrate them into the gas-sensing interface. The objective was to prompt selectivity and sensitivity enhancements that were otherwise unattained with the unmodified material when detecting a range of hydrocarbon vapours with similar molecular structures and kinetic diameters. Molecules with different functional groups were also explored. Overlayers were designed by screen-printing 1 or 3 zeolite depositions on top of the control sensor. Admixtures were prepared by screen-printing composites of the control material with 10% (w/w) and 30% (w/w) of zeolite. Tests were performed against ethane, propane, butane, ethanol, isopropanol, acetone, toluene and carbon monoxide at concentrations in the 2.5–125 ppm range and sensors were heated to temperatures in the 250–500 °C range. Sensors were also exposed to humid air and to a mixture of ethane and humid air to assess the selective capabilities of the sensing materials in mixed-gas environments. Both fabrication methods provided sensor responses that, combined, favoured vapour discrimination in a way unachievable with the control sensor and the presence of zeolite was seen to assist in sensitivity and selectivity enhancements towards vapours, whilst providing stable and repeatable responses over time.
AB - A control thick-film SnO2 gas sensor was modified with zeolites holding LTA, FAU and MFI frameworks using two different approaches to integrate them into the gas-sensing interface. The objective was to prompt selectivity and sensitivity enhancements that were otherwise unattained with the unmodified material when detecting a range of hydrocarbon vapours with similar molecular structures and kinetic diameters. Molecules with different functional groups were also explored. Overlayers were designed by screen-printing 1 or 3 zeolite depositions on top of the control sensor. Admixtures were prepared by screen-printing composites of the control material with 10% (w/w) and 30% (w/w) of zeolite. Tests were performed against ethane, propane, butane, ethanol, isopropanol, acetone, toluene and carbon monoxide at concentrations in the 2.5–125 ppm range and sensors were heated to temperatures in the 250–500 °C range. Sensors were also exposed to humid air and to a mixture of ethane and humid air to assess the selective capabilities of the sensing materials in mixed-gas environments. Both fabrication methods provided sensor responses that, combined, favoured vapour discrimination in a way unachievable with the control sensor and the presence of zeolite was seen to assist in sensitivity and selectivity enhancements towards vapours, whilst providing stable and repeatable responses over time.
U2 - 10.1016/j.snb.2016.09.006
DO - 10.1016/j.snb.2016.09.006
M3 - Article
SN - 1944-8201
VL - 242
SP - 1281
EP - 1295
JO - Sensors and Actuators B: Chemical
JF - Sensors and Actuators B: Chemical
ER -