Hydro-mechanical analysis of a surficial landslide triggered by artificial rainfall: the Ruedlingen field experiment

Panos Sitarenios, Francesca Casini, Amin Askarinejad, Sarah Springman

Research output: Contribution to journalArticlepeer-review

23 Downloads (Pure)


This paper interprets the hydromechanical behaviour of a steep forested instrumented slope during an artificial rainfall event, which triggered a shallow slope failure fifteen hours after rainfall initiation. The soil's mechanical response has been simulated by coupled hydro-mechanical finite element analyses, using a critical state constitutive model that has been extended to unsaturated conditions. Failure occurs within a colluvium shallow soil cover, characterised as a silty sand of low plasticity. The hydraulic and mechanical parameters are calibrated, based on an extended set of experimental results, ranging from water retention curve measurements to triaxial stress path tests under both saturated and unsaturated conditions. Rainfall is simulated as a water flux at the soil surface and suitable boundary conditions account for the hydromechanical interaction between the soil cover and the underlying bedrock. The results are compared with field data of the mechanistic and the hydraulic responses up to failure and are found to provide a very satisfactory prediction. The study identifies water exfiltration from bedrock fissures as the main triggering agent, resulting in increased pore pressures along the soil - bedrock interface, reduced available shear strength and cause extensive plastic straining, leading to the formation and propagation of a failure surface.
Original languageEnglish
Pages (from-to)96-109
Issue number2
Publication statusE-pub ahead of print - 30 Sep 2019

Bibliographical note

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.


  • landslides
  • numerical modelling
  • partial saturation

Fingerprint Dive into the research topics of 'Hydro-mechanical analysis of a surficial landslide triggered by artificial rainfall: the Ruedlingen field experiment'. Together they form a unique fingerprint.

Cite this