Abstract
Though technical advance of artificial intelligence and machine learning has enabled many promising intelligent systems, many computing tasks are still not able to be fully accomplished by machine intelligence. Motivated by the complementary nature of human and machine intelligence, an emerging trend is to involve humans in the loop of machine learning and decision-making. In this paper, we provide a macro–micro review of human-in-the-loop machine learning. We first describe major machine learning challenges which can be addressed by human intervention in the loop. Then we examine closely the latest research and findings of introducing humans into each step of the lifecycle of machine learning. Next, a case study of our recent application study in human-in-the-loop machine learning for population health is introduced. Finally, we analyze current research gaps and point out future research directions.
Original language | English |
---|---|
Pages (from-to) | 1-12 |
Number of pages | 12 |
Journal | CCF Transactions on Pervasive Computing and Interaction |
Volume | 5 |
Issue number | 1 |
Early online date | 8 Dec 2022 |
DOIs | |
Publication status | Published - Mar 2023 |
Keywords
- Human-in-the-loop
- Machine Learning
- Population Health