TY - JOUR
T1 - How does a flexible chain of active particles swell?
AU - Kaiser, A.
AU - Babel, S.
AU - ten Hargen, B.
AU - von Ferber, Christian
AU - Löwen, H.
PY - 2015/3/30
Y1 - 2015/3/30
N2 - We study the swelling of a flexible linear chain composed of active particles by analytical theory and computer simulation. Three different situations are considered: a free chain, a chain confined to an external harmonic trap, and a chain dragged at one end. First, we consider an ideal chain with harmonic springs and no excluded volume between the monomers. The Rouse model of polymers is generalized to the case of self-propelled monomers and solved analytically. The swelling, as characterized by the spatial extension of the chain, scales with the monomer number defining a Flory exponent ν which is ν = 1/2, 0, 1 in the three different situations. As a result, we find that activity does not change the Flory exponent but affects the prefactor of the scaling law. This can be quantitatively understood by mapping the system onto an equilibrium chain with a higher effective temperature such that the chain swells under an increase of the self-propulsion strength. We then use computer simulations to study the effect of self-avoidance on active polymer swelling. In the three different situations, the Flory exponent is now ν = 3/4, 1/4, 1 and again unchanged under self-propulsion. However, the chain extension behaves non-monotonic in the self-propulsion strength.
AB - We study the swelling of a flexible linear chain composed of active particles by analytical theory and computer simulation. Three different situations are considered: a free chain, a chain confined to an external harmonic trap, and a chain dragged at one end. First, we consider an ideal chain with harmonic springs and no excluded volume between the monomers. The Rouse model of polymers is generalized to the case of self-propelled monomers and solved analytically. The swelling, as characterized by the spatial extension of the chain, scales with the monomer number defining a Flory exponent ν which is ν = 1/2, 0, 1 in the three different situations. As a result, we find that activity does not change the Flory exponent but affects the prefactor of the scaling law. This can be quantitatively understood by mapping the system onto an equilibrium chain with a higher effective temperature such that the chain swells under an increase of the self-propulsion strength. We then use computer simulations to study the effect of self-avoidance on active polymer swelling. In the three different situations, the Flory exponent is now ν = 3/4, 1/4, 1 and again unchanged under self-propulsion. However, the chain extension behaves non-monotonic in the self-propulsion strength.
U2 - 10.1063/1.4916134
DO - 10.1063/1.4916134
M3 - Article
SN - 0021-9606
SN - 1089-7690
VL - 142
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
M1 - 124905
ER -