High-Fat Overfeeding Impairs Peripheral Glucose Metabolism and Muscle Microvascular eNOS Ser1177 Phosphorylation

Siôn A Parry, Mark C Turner, Rachel M Woods, Lewis J James, Richard A Ferguson, Matthew Cocks, Katie L Whytock, Juliette A Strauss, Sam O Shepherd, Anton J M Wagenmakers, Gerrit van Hall, Carl J Hulston

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

CONTEXT: The mechanisms responsible for dietary fat-induced insulin resistance of skeletal muscle and its microvasculature are only partially understood.

OBJECTIVE: To determine the impact of high-fat overfeeding on postprandial glucose fluxes, muscle insulin signaling, and muscle microvascular endothelial nitric oxide synthase (eNOS) content and activation.

DESIGN: Fifteen non-obese volunteers consumed a high-fat (64%) high-energy (+47%) diet for 7 days. Experiments were performed before and after the diet. Stable isotope tracers were used to determine glucose fluxes in response to carbohydrate plus protein ingestion. Muscle insulin signaling was determined as well as the content and activation state of muscle microvascular eNOS.

RESULTS: High-fat overfeeding impaired postprandial glycemic control as demonstrated by higher concentrations of glucose (+11%; P = 0.004) and insulin (+19%; P = 0.035). Carbohydrate plus protein ingestion suppressed endogenous glucose production to a similar extent before and after the diet. Conversely, high-fat overfeeding reduced whole-body glucose clearance (-16%; P = 0.021) and peripheral insulin sensitivity (-26%; P = 0.006). This occurred despite only minor alterations in skeletal muscle insulin signaling. High-fat overfeeding reduced eNOS content in terminal arterioles (P = 0.017) and abolished the increase in eNOS Ser1177 phosphorylation that was seen after carbohydrate plus protein ingestion.

CONCLUSION: High-fat overfeeding impaired whole-body glycemic control due to reduced glucose clearance, not elevated endogenous glucose production. The finding that high-fat overfeeding abolished insulin-mediated eNOS Ser1177 phosphorylation in the terminal arterioles suggests that impairments in the vasodilatory capacity of the skeletal muscle microvasculature may contribute to early dietary fat-induced impairments in glycemic control.

Original languageEnglish
Article numberdgz018
Number of pages13
JournalJournal of Clinical Endocrinology and Metabolism
Volume105
Issue number1
Early online date12 Sep 2019
DOIs
Publication statusPublished - 1 Jan 2020
Externally publishedYes

Bibliographical note

© Endocrine Society 2019. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry
  • Endocrinology
  • Clinical Biochemistry
  • Biochemistry, medical

Fingerprint Dive into the research topics of 'High-Fat Overfeeding Impairs Peripheral Glucose Metabolism and Muscle Microvascular eNOS Ser1177 Phosphorylation'. Together they form a unique fingerprint.

  • Cite this