Abstract
Objective: To investigate whether hemodynamic features of symptomatic intracranial atherosclerotic stenosis (sICAS) might correlate with the risk of stroke relapse, using a computational fluid dynamics (CFD) model. Methods: In a cohort study, we recruited patients with acute ischemic stroke attributed to 50 to 99% ICAS confirmed by computed tomographic angiography (CTA). With CTA-based CFD models, translesional pressure ratio (PR = pressure poststenotic /pressure prestenotic ) and translesional wall shear stress ratio (WSSR = WSS stenotic − throat /WSS prestenotic ) were obtained in each sICAS lesion. Translesional PR ≤ median was defined as low PR and WSSR ≥4th quartile as high WSSR. All patients received standard medical treatment. The primary outcome was recurrent ischemic stroke in the same territory (SIT) within 1 year. Results: Overall, 245 patients (median age = 61 years, 63.7% males) were analyzed. Median translesional PR was 0.94 (interquartile range [IQR] = 0.87–0.97); median translesional WSSR was 13.3 (IQR = 7.0–26.7). SIT occurred in 20 (8.2%) patients, mostly with multiple infarcts in the border zone and/or cortical regions. In multivariate Cox regression, low PR (adjusted hazard ratio [HR] = 3.16, p = 0.026) and high WSSR (adjusted HR = 3.05, p = 0.014) were independently associated with SIT. Patients with both low PR and high WSSR had significantly higher risk of SIT than those with normal PR and WSSR (risk = 17.5% vs 3.0%, adjusted HR = 7.52, p = 0.004). Interpretation: This work represents a step forward in utilizing computational flow simulation techniques in studying intracranial atherosclerotic disease. It reveals a hemodynamic pattern of sICAS that is more prone to stroke relapse, and supports hypoperfusion and artery-to-artery embolism as common mechanisms of ischemic stroke in such patients. Ann Neurol 2019;85:752–764.
Original language | English |
---|---|
Pages (from-to) | 752-764 |
Number of pages | 13 |
Journal | Annals of Neurology |
Volume | 85 |
Issue number | 5 |
Early online date | 3 Apr 2019 |
DOIs | |
Publication status | Published - May 2019 |
Externally published | Yes |
ASJC Scopus subject areas
- Neurology
- Clinical Neurology