TY - JOUR
T1 - Hemodynamic significance of intracranial atherosclerotic disease and ipsilateral imaging markers of cerebral small vessel disease
AU - Zheng, Lina
AU - Tian, Xuan
AU - Abrigo, Jill
AU - Fang, Hui
AU - Ip, Bonaventure YM
AU - Liu, Yuying
AU - Li, Shuang
AU - Liu, Yu
AU - Lan, Linfang
AU - Liu, Haipeng
AU - Ip, Hing Lung
AU - Fan, Florence SY
AU - Ma, Sze Ho
AU - Ma, Karen
AU - Lau, Alexander Y
AU - Soo, Yannie OY
AU - Leung, Howan
AU - Mok, Vincent CT
AU - Wong , Lawrence KS
AU - Xu, Yuming
AU - Liu, Liping
AU - Leng, Xinyi
AU - Leung, Thomas W
N1 - Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.
This document is the author’s post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.
PY - 2024/3
Y1 - 2024/3
N2 - Introduction: Cerebral small vessel disease (CSVD) commonly exists in patients with symptomatic intracranial atherosclerotic disease (sICAD). We aimed to investigate the associations of hemodynamic features of sICAD lesions with imaging markers and overall burden of CSVD. Patients and methods: Patients with anterior-circulation sICAD (50%–99% stenosis) were analyzed in this cross-sectional study. Hemodynamic features of a sICAD lesion were quantified by translesional pressure ratio (PR = Pressurepost-stenotic/Pressurepre-stenotic) and wall shear stress ratio (WSSR = WSSstenotic-throat/WSSpre-stenotic) via CT angiography-based computational fluid dynamics modeling. PR ⩽median was defined as low (“abnormal”) PR, and WSSR ⩾ fourth quartile as high (“abnormal”) WSSR. For primary analyses, white matter hyperintensities (WMHs), lacunes, and cortical microinfarcts (CMIs) were assessed in MRI and summed up as overall CSVD burden, respectively in ipsilateral and contralateral hemispheres to sICAD. Enlarged perivascular spaces (EPVSs) and cerebral microbleeds (CMBs) were assessed for secondary analyses. Results: Among 112 sICAD patients, there were more severe WMHs, more lacunes and CMIs, and more severe overall CSVD burden ipsilaterally than contralaterally (all p < 0.05). Abnormal PR and WSSR (vs normal PR and WSSR) was significantly associated with moderate-to-severe WMHs (adjusted odds ratio = 10.12, p = 0.018), CMI presence (5.25, p = 0.003), and moderate-to-severe CSVD burden (12.55; p = 0.033), ipsilaterally, respectively independent of contralateral WMHs, CMI(s), and CSVD burden. EPVSs and CMBs were comparable between the two hemispheres, with no association found with the hemodynamic metrics. Discussion and conclusion: There are more severe WMHs and CMI(s) in the hemisphere ipsilateral than contralateral to sICAD. The hemodynamic significance of sICAD lesions was independently associated with severities of WMHs and CMI(s) ipsilaterally.
AB - Introduction: Cerebral small vessel disease (CSVD) commonly exists in patients with symptomatic intracranial atherosclerotic disease (sICAD). We aimed to investigate the associations of hemodynamic features of sICAD lesions with imaging markers and overall burden of CSVD. Patients and methods: Patients with anterior-circulation sICAD (50%–99% stenosis) were analyzed in this cross-sectional study. Hemodynamic features of a sICAD lesion were quantified by translesional pressure ratio (PR = Pressurepost-stenotic/Pressurepre-stenotic) and wall shear stress ratio (WSSR = WSSstenotic-throat/WSSpre-stenotic) via CT angiography-based computational fluid dynamics modeling. PR ⩽median was defined as low (“abnormal”) PR, and WSSR ⩾ fourth quartile as high (“abnormal”) WSSR. For primary analyses, white matter hyperintensities (WMHs), lacunes, and cortical microinfarcts (CMIs) were assessed in MRI and summed up as overall CSVD burden, respectively in ipsilateral and contralateral hemispheres to sICAD. Enlarged perivascular spaces (EPVSs) and cerebral microbleeds (CMBs) were assessed for secondary analyses. Results: Among 112 sICAD patients, there were more severe WMHs, more lacunes and CMIs, and more severe overall CSVD burden ipsilaterally than contralaterally (all p < 0.05). Abnormal PR and WSSR (vs normal PR and WSSR) was significantly associated with moderate-to-severe WMHs (adjusted odds ratio = 10.12, p = 0.018), CMI presence (5.25, p = 0.003), and moderate-to-severe CSVD burden (12.55; p = 0.033), ipsilaterally, respectively independent of contralateral WMHs, CMI(s), and CSVD burden. EPVSs and CMBs were comparable between the two hemispheres, with no association found with the hemodynamic metrics. Discussion and conclusion: There are more severe WMHs and CMI(s) in the hemisphere ipsilateral than contralateral to sICAD. The hemodynamic significance of sICAD lesions was independently associated with severities of WMHs and CMI(s) ipsilaterally.
KW - Cerebral small vessel disease
KW - hemodynamics
KW - intracranial atherosclerotic disease
KW - white matter hyperintensity
KW - cortical microinfarct
UR - http://www.scopus.com/inward/record.url?scp=85173723092&partnerID=8YFLogxK
U2 - 10.1177/23969873231205669
DO - 10.1177/23969873231205669
M3 - Article
SN - 2396-9873
VL - 9
SP - 144
EP - 153
JO - European Stroke Journal
JF - European Stroke Journal
IS - 1
ER -