GPU-Accelerated Population Annealing Algorithm: Frustrated Ising Antiferromagnet on the Stacked Triangular Lattice

M. Borovsky, Martin Weigel, L.Y. Barash, M. Zukovic

    Research output: Contribution to conferencePaper

    9 Citations (Scopus)
    70 Downloads (Pure)

    Abstract

    The population annealing algorithm is a novel approach to study systems with rough free-energy landscapes, such as spin glasses. It combines the power of simulated annealing, Boltzmann weighted differential reproduction and sequential Monte Carlo process to bring the population of replicas to the equilibrium even in the low-temperature region. Moreover, it provides a very good estimate of the free energy. The fact that population annealing algorithm is performed over a large number of replicas with many spin updates, makes it a good candidate for massive parallelism. We chose the GPU programming using a CUDA implementation to create a highly optimized simulation. It has been previously shown for the frustrated Ising antiferromagnet on the stacked triangular lattice with a ferromagnetic interlayer coupling, that standard Markov Chain Monte Carlo simulations fail to equilibrate at low temperatures due to the effect of kinetic freezing of the ferromagnetically ordered chains. We applied the population annealing to study the case with the isotropic intra- and interlayer antiferromagnetic coupling (J2/|J1| = −1). The reached ground states correspond to non-magnetic degenerate states, where chains are antiferromagnetically ordered, but there is no long-range ordering between them, which is analogical with Wannier phase of the 2D triangular Ising antiferromagnet.
    Original languageEnglish
    Pages02016
    DOIs
    Publication statusPublished - 2016
    EventMathematical Modeling and Computational Physics - Stará Lesná, Slovakia
    Duration: 13 Jul 201517 Jul 2015

    Conference

    ConferenceMathematical Modeling and Computational Physics
    Abbreviated titleMMCP 2015
    Country/TerritorySlovakia
    CityStará Lesná
    Period13/07/1517/07/15

    Bibliographical note

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0 http://creativecommons.org/licenses/by/4.0/ , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    Fingerprint

    Dive into the research topics of 'GPU-Accelerated Population Annealing Algorithm: Frustrated Ising Antiferromagnet on the Stacked Triangular Lattice'. Together they form a unique fingerprint.

    Cite this