Abstract
Random walks are fundamental models of stochastic processes with applications in various fields including physics, biology, and computer science. We study classical and quantum random walks under the influence of stochastic resetting on arbitrary networks. Based on the mathematical formalism of quantum stochastic walks, we provide a framework of classical and quantum walks whose evolution is determined by graph Laplacians. We study the influence of quantum effects on the stationary and long-time average probability distribution by interpolating between the classical and quantum regime. We compare our analytical results on stationary and long-time average probability distributions with numerical simulations on different networks, revealing differences in the way resets affect the sampling properties of classical and quantum walks.
Original language | English |
---|---|
Article number | 012122 |
Number of pages | 12 |
Journal | Physical Review E |
Volume | 103 |
Issue number | 1 |
DOIs | |
Publication status | Published - 19 Jan 2021 |
Externally published | Yes |
Bibliographical note
Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Open access publication funded by the Max Planck Society.Keywords
- cond-mat.stat-mech
- quant-ph
ASJC Scopus subject areas
- Condensed Matter Physics
- Statistical and Nonlinear Physics
- Statistics and Probability