Four-dimensional equations for the study of electromagnetic plasma turbulence in a drift kinetic limit

Evgeny A. Gorbunov, Bogdan Teaca

    Research output: Contribution to journalArticlepeer-review

    3 Citations (Scopus)


    For a magnetised plasma in a straight magnetic guide field, we derive a set of four-dimensional kinetic equations, which can capture electromagnetic turbulence in the drift kinetic limit. To do so, we start from the gyrokinetic equations, employ a Laguerre decomposition in the perpendicular velocity direction, retaining only the dominant gyroaverage contributions and only the first two Laguerre moments that source the electromagnetic fluctuations. The model conserves free energy, and can describe electromagnetic turbulence for a plasma at the transition between fluid and gyrokinetic regimes ( $k_\perp \rho _i\approx 1$ range of scales), as dominant finite-Larmor-radius (FLR) effects are considered. In addition to the three dimensions in positions space, we retain the parallel velocity dependence, which we describe via a Hermite representation. Employing this system, but without any other physics-based assumptions for the plasma species that can bias results, will allow us to investigate how fluid effects transition into the kinetic range, and analyse the interplay between spatial and velocity space mixing for electromagnetic plasma turbulence.
    Original languageEnglish
    Pages (from-to)(In-Press)
    JournalJournal of Plasma Physics
    Issue number1
    Publication statusE-pub ahead of print - 28 Feb 2022


    • Condensed Matter Physics


    Dive into the research topics of 'Four-dimensional equations for the study of electromagnetic plasma turbulence in a drift kinetic limit'. Together they form a unique fingerprint.

    Cite this