Abstract
Two numerical strategies based on the Wang–Landau and Lee entropic sampling schemes are implemented to investigate the first-order transition features of the 3D bimodal (± h) random-field Ising model at the strong disorder regime. We consider simple cubic lattices with linear sizes in the range L = 4–32 and simulate the system for two values of the disorder strength: h = 2 and 2.25. The nature of the transition is elucidated by applying the Lee–Kosterlitz free-energy barrier method. Our results indicate that, despite the strong first-order-like characteristics, the transition remains continuous, in disagreement with the early mean-field theory prediction of a tricritical point at high values of the random field.
Original language | English |
---|---|
Article number | P03015 |
Journal | Journal of Statistical Mechanics: Theory and Experiment |
Volume | 2008 |
DOIs | |
Publication status | Published - 28 Mar 2008 |