FieldMAP: a spatiotemporal field monitoring application prototyping framework

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

The fundamental aim of monitoring is to identify abnormalities in the observed phenomena and allow inference of the likely cause. Faced with the common problems of spatially irregular sensor distribution and intermittent sensor measurement availability, key to fulfilling the monitoring aim is filling in the spatiotemporal gaps in the data. While wireless sensor networks (WSNs) technology, combined with microelectromechanical systems availability potentially offer sensing solutions for a variety of application domains, in the context of monitoring applications a conceptual shift is needed from currently available, point-measurement-based ldquosense-and-sendrdquo systems toward the provision of phenomena field representations, in real time, enabling effective visualization of the spatiotemporal patterns. This paper argues the case for a generic, rapid prototyping framework for end-to-end sensing systems that support the approach of providing field representations for visualization. A formal approach to framework development was taken, ensuring that resulting instrumentation systems are well specified. Both the framework development and its evaluation are linked to the full cycle of requirements setting, design, and deployment of a prototype instrumentation system for aerospace applications-specifically, health monitoring of a gas turbine engine. The field monitoring application prototyping (FieldMAP) framework supports multimodal sensing, provides a number of opportunities for data processing and information extraction, caters for monitoring of the instrumentation health, offers a modular field-mapping design component and allows for real-time phenomena visualization, data and information logging, and postanalysis. Experience with the FieldMAP has shown that sophisticated and robust prototypes can be developed in a short period of time.
LanguageEnglish
Pages1378-1390
JournalIEEE Sensors Journal
Volume9
Issue number11
DOIs
Publication statusPublished - Nov 2009

Fingerprint

Monitoring
health
availability
sensors
prototypes
scientific visualization
gas turbine engines
rapid prototyping
support systems
Visualization
abnormalities
Health
Availability
inference
microelectromechanical systems
Aerospace applications
Data visualization
Sensors
Rapid prototyping
MEMS

Bibliographical note

© 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Keywords

  • Aircraft instrumentation
  • wireless sensor networks (WSNs)

Cite this

@article{78dafd22e1c24e9cad69f91eab56dd0e,
title = "FieldMAP: a spatiotemporal field monitoring application prototyping framework",
abstract = "The fundamental aim of monitoring is to identify abnormalities in the observed phenomena and allow inference of the likely cause. Faced with the common problems of spatially irregular sensor distribution and intermittent sensor measurement availability, key to fulfilling the monitoring aim is filling in the spatiotemporal gaps in the data. While wireless sensor networks (WSNs) technology, combined with microelectromechanical systems availability potentially offer sensing solutions for a variety of application domains, in the context of monitoring applications a conceptual shift is needed from currently available, point-measurement-based ldquosense-and-sendrdquo systems toward the provision of phenomena field representations, in real time, enabling effective visualization of the spatiotemporal patterns. This paper argues the case for a generic, rapid prototyping framework for end-to-end sensing systems that support the approach of providing field representations for visualization. A formal approach to framework development was taken, ensuring that resulting instrumentation systems are well specified. Both the framework development and its evaluation are linked to the full cycle of requirements setting, design, and deployment of a prototype instrumentation system for aerospace applications-specifically, health monitoring of a gas turbine engine. The field monitoring application prototyping (FieldMAP) framework supports multimodal sensing, provides a number of opportunities for data processing and information extraction, caters for monitoring of the instrumentation health, offers a modular field-mapping design component and allows for real-time phenomena visualization, data and information logging, and postanalysis. Experience with the FieldMAP has shown that sophisticated and robust prototypes can be developed in a short period of time.",
keywords = "Aircraft instrumentation, wireless sensor networks (WSNs)",
author = "James Brusey and Elena Gaura and Daniel Goldsmith and James Shuttleworth",
note = "{\circledC} 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.",
year = "2009",
month = "11",
doi = "10.1109/JSEN.2009.2021799",
language = "English",
volume = "9",
pages = "1378--1390",
journal = "IEEE Sensors Journal",
issn = "1530-437X",
publisher = "Institute of Electrical and Electronics Engineers",
number = "11",

}

TY - JOUR

T1 - FieldMAP: a spatiotemporal field monitoring application prototyping framework

AU - Brusey, James

AU - Gaura, Elena

AU - Goldsmith, Daniel

AU - Shuttleworth, James

N1 - © 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

PY - 2009/11

Y1 - 2009/11

N2 - The fundamental aim of monitoring is to identify abnormalities in the observed phenomena and allow inference of the likely cause. Faced with the common problems of spatially irregular sensor distribution and intermittent sensor measurement availability, key to fulfilling the monitoring aim is filling in the spatiotemporal gaps in the data. While wireless sensor networks (WSNs) technology, combined with microelectromechanical systems availability potentially offer sensing solutions for a variety of application domains, in the context of monitoring applications a conceptual shift is needed from currently available, point-measurement-based ldquosense-and-sendrdquo systems toward the provision of phenomena field representations, in real time, enabling effective visualization of the spatiotemporal patterns. This paper argues the case for a generic, rapid prototyping framework for end-to-end sensing systems that support the approach of providing field representations for visualization. A formal approach to framework development was taken, ensuring that resulting instrumentation systems are well specified. Both the framework development and its evaluation are linked to the full cycle of requirements setting, design, and deployment of a prototype instrumentation system for aerospace applications-specifically, health monitoring of a gas turbine engine. The field monitoring application prototyping (FieldMAP) framework supports multimodal sensing, provides a number of opportunities for data processing and information extraction, caters for monitoring of the instrumentation health, offers a modular field-mapping design component and allows for real-time phenomena visualization, data and information logging, and postanalysis. Experience with the FieldMAP has shown that sophisticated and robust prototypes can be developed in a short period of time.

AB - The fundamental aim of monitoring is to identify abnormalities in the observed phenomena and allow inference of the likely cause. Faced with the common problems of spatially irregular sensor distribution and intermittent sensor measurement availability, key to fulfilling the monitoring aim is filling in the spatiotemporal gaps in the data. While wireless sensor networks (WSNs) technology, combined with microelectromechanical systems availability potentially offer sensing solutions for a variety of application domains, in the context of monitoring applications a conceptual shift is needed from currently available, point-measurement-based ldquosense-and-sendrdquo systems toward the provision of phenomena field representations, in real time, enabling effective visualization of the spatiotemporal patterns. This paper argues the case for a generic, rapid prototyping framework for end-to-end sensing systems that support the approach of providing field representations for visualization. A formal approach to framework development was taken, ensuring that resulting instrumentation systems are well specified. Both the framework development and its evaluation are linked to the full cycle of requirements setting, design, and deployment of a prototype instrumentation system for aerospace applications-specifically, health monitoring of a gas turbine engine. The field monitoring application prototyping (FieldMAP) framework supports multimodal sensing, provides a number of opportunities for data processing and information extraction, caters for monitoring of the instrumentation health, offers a modular field-mapping design component and allows for real-time phenomena visualization, data and information logging, and postanalysis. Experience with the FieldMAP has shown that sophisticated and robust prototypes can be developed in a short period of time.

KW - Aircraft instrumentation

KW - wireless sensor networks (WSNs)

U2 - 10.1109/JSEN.2009.2021799

DO - 10.1109/JSEN.2009.2021799

M3 - Article

VL - 9

SP - 1378

EP - 1390

JO - IEEE Sensors Journal

T2 - IEEE Sensors Journal

JF - IEEE Sensors Journal

SN - 1530-437X

IS - 11

ER -