Fabrication and Evaluation of a Novel Non-Invasive Stretchable and Wearable Respiratory Rate Sensor Based on Silver Nanoparticles Using Inkjet Printing Technology

Ala’aldeen Al-Halhouli, Loiy Al-Ghussain, Saleem El Bouri, Haipeng Liu, Dingchang Zheng

Research output: Contribution to journalArticle

9 Citations (Scopus)
2 Downloads (Pure)

Abstract

The respiration rate (RR) is a key vital sign that links to adverse clinical outcomes and has various important uses. However, RR signals have been neglected in many clinical practices for several reasons and it is still difficult to develop low-cost RR sensors for accurate, automated, and continuous measurement. This study aims to fabricate, develop and evaluate a novel stretchable and wearable RR sensor that is low-cost and easy to use. The sensor is fabricated using the soft lithography technique of polydimethylsiloxane substrates (PDMS) for the stretchable sensor body and inkjet printing technology for creating the conductive circuit by depositing the silver nanoparticles on top of the PDMS substrates. The inkjet-printed (IJP) PDMS-based sensor was developed to detect the inductance fluctuations caused by respiratory volumetric changes. The output signal was processed in a Wheatstone bridge circuit to derive the RR. Six different patterns for a IJP PDMS-based sensor were carefully designed and tested. Their sustainability (maximum strain during measurement) and durability (the ability to go bear axial cyclic strains) were investigated and compared on an automated mechanical stretcher. Their repeatability (output of the sensor in repeated tests under identical condition) and reproducibility (output of different sensors with the same design under identical condition) were investigated using a respiratory simulator. The selected optimal design pattern from the simulator evaluation was used in the fabrication of the IJP PDMS-based sensor where the accuracy was inspected by attaching it to 37 healthy human subjects (aged between 19 and 34 years, seven females) and compared with the reference values from e-Health nasal sensor. Only one design survived the inspection procedures where design #6 (array consists of two horseshoe lines) indicated the best sustainability and durability, and went through the repeatability and reproducibility tests. Based on the best pattern, the developed sensor accurately measured the simulated RR with an error rate of 0.46 ± 0.66 beats per minute (BPM, mean ± SD). On human subjects, the IJP PDMS-based sensor and the reference e-Health sensor showed the same RR value, without any observable differences. The performance of the sensor was accurate with no apparent error compared with the reference sensor. Considering its low cost, good mechanical property, simplicity, and accuracy, the IJP PDMS-based sensor is a promising technique for continuous and wearable RR monitoring, especially under low-resource conditions.
Original languageEnglish
Number of pages21
JournalPolymers
Volume11
Issue number9
DOIs
Publication statusPublished - 18 Sep 2019
Externally publishedYes

Bibliographical note

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Keywords

  • respiratory rate
  • wearable sensors
  • stretchable circuits
  • inkjet printing
  • PDMS

Fingerprint Dive into the research topics of 'Fabrication and Evaluation of a Novel Non-Invasive Stretchable and Wearable Respiratory Rate Sensor Based on Silver Nanoparticles Using Inkjet Printing Technology'. Together they form a unique fingerprint.

  • Cite this