Exploiting interactions between structure size and indentation size effects to determine the characteristic dimension of nano-structured materials by indentation

X. Hou, N.M. Jennett, M. Parlinska-Wojtan

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

It was shown that yield (or flow) stress is determined by a critical dimension and the reciprocal sum of component critical dimensions (such as indentation size, structure size and dislocation density) combine into a single critical dimension as predicted by slip distance theory (Hou et al 2012 Acta. Mater. 60 4128). This suggests that 'length determines strength' and all lengths contribute at all times to the critical value. We have already shown that Cu hardness increases when grain size falls below six times the indentation contact radius (Hou et al 2008 J. Phys. D: Appl. Phys. 41 074006). In this paper, we test the inverse case (indent size greater than grain size), by indenting two different metallic glasses (NiAl and ZrTiAlCuBe). We show that the indentation size effect (ISE) does indeed become observable even when the indent size is larger than the grain size by up to an order of magnitude. The indentation depth (size) at onset of the ISE is proportional to the characteristic structure size of these nano-structured materials and suggests a novel use of ISE as a determinant of structure size. These findings have implications for the design of hardness reference blocks and the use of hardness mapping to determine materials property variations.
Original languageEnglish
JournalJournal of Physics D: Applied Physics
Volume46
Issue number26
DOIs
Publication statusPublished - 2013

Fingerprint

indentation
interactions
hardness
grain size
metallic glasses
determinants
slip
radii

Cite this

@article{7c2b74c4e48344d6b62ac51d98754fa4,
title = "Exploiting interactions between structure size and indentation size effects to determine the characteristic dimension of nano-structured materials by indentation",
abstract = "It was shown that yield (or flow) stress is determined by a critical dimension and the reciprocal sum of component critical dimensions (such as indentation size, structure size and dislocation density) combine into a single critical dimension as predicted by slip distance theory (Hou et al 2012 Acta. Mater. 60 4128). This suggests that 'length determines strength' and all lengths contribute at all times to the critical value. We have already shown that Cu hardness increases when grain size falls below six times the indentation contact radius (Hou et al 2008 J. Phys. D: Appl. Phys. 41 074006). In this paper, we test the inverse case (indent size greater than grain size), by indenting two different metallic glasses (NiAl and ZrTiAlCuBe). We show that the indentation size effect (ISE) does indeed become observable even when the indent size is larger than the grain size by up to an order of magnitude. The indentation depth (size) at onset of the ISE is proportional to the characteristic structure size of these nano-structured materials and suggests a novel use of ISE as a determinant of structure size. These findings have implications for the design of hardness reference blocks and the use of hardness mapping to determine materials property variations.",
author = "X. Hou and N.M. Jennett and M. Parlinska-Wojtan",
year = "2013",
doi = "10.1088/0022-3727/46/26/265301",
language = "English",
volume = "46",
journal = "Journal Physics D: Applied Physics",
issn = "0022-3727",
publisher = "IOP Publishing",
number = "26",

}

TY - JOUR

T1 - Exploiting interactions between structure size and indentation size effects to determine the characteristic dimension of nano-structured materials by indentation

AU - Hou, X.

AU - Jennett, N.M.

AU - Parlinska-Wojtan, M.

PY - 2013

Y1 - 2013

N2 - It was shown that yield (or flow) stress is determined by a critical dimension and the reciprocal sum of component critical dimensions (such as indentation size, structure size and dislocation density) combine into a single critical dimension as predicted by slip distance theory (Hou et al 2012 Acta. Mater. 60 4128). This suggests that 'length determines strength' and all lengths contribute at all times to the critical value. We have already shown that Cu hardness increases when grain size falls below six times the indentation contact radius (Hou et al 2008 J. Phys. D: Appl. Phys. 41 074006). In this paper, we test the inverse case (indent size greater than grain size), by indenting two different metallic glasses (NiAl and ZrTiAlCuBe). We show that the indentation size effect (ISE) does indeed become observable even when the indent size is larger than the grain size by up to an order of magnitude. The indentation depth (size) at onset of the ISE is proportional to the characteristic structure size of these nano-structured materials and suggests a novel use of ISE as a determinant of structure size. These findings have implications for the design of hardness reference blocks and the use of hardness mapping to determine materials property variations.

AB - It was shown that yield (or flow) stress is determined by a critical dimension and the reciprocal sum of component critical dimensions (such as indentation size, structure size and dislocation density) combine into a single critical dimension as predicted by slip distance theory (Hou et al 2012 Acta. Mater. 60 4128). This suggests that 'length determines strength' and all lengths contribute at all times to the critical value. We have already shown that Cu hardness increases when grain size falls below six times the indentation contact radius (Hou et al 2008 J. Phys. D: Appl. Phys. 41 074006). In this paper, we test the inverse case (indent size greater than grain size), by indenting two different metallic glasses (NiAl and ZrTiAlCuBe). We show that the indentation size effect (ISE) does indeed become observable even when the indent size is larger than the grain size by up to an order of magnitude. The indentation depth (size) at onset of the ISE is proportional to the characteristic structure size of these nano-structured materials and suggests a novel use of ISE as a determinant of structure size. These findings have implications for the design of hardness reference blocks and the use of hardness mapping to determine materials property variations.

U2 - 10.1088/0022-3727/46/26/265301

DO - 10.1088/0022-3727/46/26/265301

M3 - Article

VL - 46

JO - Journal Physics D: Applied Physics

JF - Journal Physics D: Applied Physics

SN - 0022-3727

IS - 26

ER -