Experimental Validation of Dual H-Bridge Current Flow Controllers for Meshed HVdc Grids

Senthooran Balasubramaniam, Carlos E. Ugalde-Loo, Jun Liang, Tibin Joseph, Rose King, Andrzej Adamczyk

Research output: Contribution to journalArticle

20 Citations (Scopus)
10 Downloads (Pure)

Abstract

The current-carrying capability of dc lines is limited by their thermal and electric stress limits. Thus, the line current must be maintained within the permissible operational region to protect the lines from damage. In a dense dc grid, control over each line current cannot be achieved without including additional control devices. In this paper, a dual H-bridge current flow controller (2B-CFC) is used to manage the dc grid line power flow by providing dc voltage compensation in series with dc lines. A centralized hierarchical control system is proposed to coordinate the operation between multiple CFCs. A novel voltage-sharing control scheme is demonstrated. It is shown that such a scheme reduces the workload on a single CFC by sharing the required control voltage between multiple CFCs, and, in addition, can be used to avoid control conflicts among active CFCs during communication failure. An experimental platform consisting of a three-terminal dc grid and small-scale 2B-CFC prototypes has been developed to validate the concepts. For completeness, the CFC performance has been analyzed for overload conditions and when no communication exists. Small-scale dc circuit breakers have been developed to study the CFC performance under a pole-to-pole fault.

Original languageEnglish
Article number8039519
Pages (from-to)381-392
Number of pages12
JournalIEEE Transactions on Power Delivery
Volume33
Issue number1
Early online date18 Sep 2017
DOIs
Publication statusPublished - Feb 2018
Externally publishedYes

Bibliographical note

Open Access. This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

Keywords

  • Current flow controller
  • dc circuit breaker
  • dc line
  • H-bridge
  • multi-terminal HVdc grids
  • voltage source converter

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Experimental Validation of Dual H-Bridge Current Flow Controllers for Meshed HVdc Grids'. Together they form a unique fingerprint.

Cite this