Exergetic, economic and exergo-environmental analysis of bottoming power cycles operating with CO2-based binary mixture

Muhammad Haroon, Nadeem Ahmed Sheikh, Abubakr Ayub, Rasikh Tariq, Farooq Sher, Aklilu Tesfamichael Baheta, Muhammad Imran

Research output: Contribution to journalArticle

1 Downloads (Pure)

Abstract

This study focused on investigating the bottoming power cycles operating with CO2-based binary mixture, taking into account exergetic, economic and exergo-environmental impact indices. The main intent is to assess the benefits of employing a CO2-based mixture working fluid in closed Brayton bottoming power cycles in comparison with pure CO2 working fluid. Firstly, selection criteria for the choice of suitable additive compound for CO2-based binary mixture is delineated and the composition of the binary mixture is decided based on required cycle minimum temperature. The decided CO2-C7H8 binary mixture with a 0.9 mole fraction of CO2 is analyzed in two cycle configurations: Simple regenerative cycle (SRC) and Partial heating cycle (PHC). Comparative analysis among two configurations with selected working fluid are carried out. Thermodynamic analyses at varying cycle pressure ratio shows that cycle with CO2-C7H8 mixture shows maximum power output and exergy efficiency at rather higher cycle pressure ratio compared to pure CO2 power cycles. PHC with CO2-C7H8 mixture shows 28.68% increment in exergy efficiency with the levelized cost of electricity (LCOE) 21.62% higher than pure CO2 PHC. Whereas, SRC with CO2-C7H8 mixture shows 25.17% increment in exergy efficiency with LCOE 57.14% higher than pure CO2 SRC. Besides showing lower economic value, cycles with a CO2-C7H8 mixture saves larger CO2 emissions and also shows greater exergo-environmental impact improvement and plant sustainability index.
Original languageEnglish
Article number5080
Number of pages19
JournalEnergies
Volume13
Issue number19
DOIs
Publication statusPublished - 29 Sep 2020

Bibliographical note

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Keywords

  • Bottoming power cycles
  • CO -based binary mixture
  • CO emissions savings
  • Exergetic analysis
  • Exergo-environmental impact indices
  • Sustainability index

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Energy (miscellaneous)
  • Control and Optimization
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Exergetic, economic and exergo-environmental analysis of bottoming power cycles operating with CO2-based binary mixture'. Together they form a unique fingerprint.

Cite this