Abstract
Purpose: Vehicle weight reduction represents a viable means of meeting tougher regulatory requirements designed to reduce fuel consumption and control greenhouse gas emissions. This research presents an empirical and comparative analysis of lightweight magnesium (Mg) materials used to replace conventional steel in passenger vehicles with internal combustion engines. The very low density of Mg makes it a viable material for light weighting given that it 1/3 lighter than aluminium and 3/4 lighter than steel.
Approach: A structural evaluation case study of the ‘open access’ Wikispeed car was undertaken. This included an assessment of material design characteristics such as bending stiffness, torsional stiffness and crashworthiness to evaluate whether magnesium provides a better alternative to the current usage of aluminium in the automotive industry.
Findings: The Wikispeed car had an issue with the rocker beam width/ thickness (b/t) ratio indicating failure in yield instead of buckling. By changing the specified material, Aluminium Alloy 6061-T651 to Magnesium EN-MB10020 it was revealed that vehicle mass could be reduced by an estimated 110 kg, in turn improving the fuel economy by 10%. This however would require mechanical performance compromise unless the current design is modified.
Originality: This is the first time that a comparative analysis of material substitution has been made on the Wikispeed car. The results of such work will assist in the lowering of harmful greenhouse gas emissions (GHG) and simultaneously augment fuel economy.
Approach: A structural evaluation case study of the ‘open access’ Wikispeed car was undertaken. This included an assessment of material design characteristics such as bending stiffness, torsional stiffness and crashworthiness to evaluate whether magnesium provides a better alternative to the current usage of aluminium in the automotive industry.
Findings: The Wikispeed car had an issue with the rocker beam width/ thickness (b/t) ratio indicating failure in yield instead of buckling. By changing the specified material, Aluminium Alloy 6061-T651 to Magnesium EN-MB10020 it was revealed that vehicle mass could be reduced by an estimated 110 kg, in turn improving the fuel economy by 10%. This however would require mechanical performance compromise unless the current design is modified.
Originality: This is the first time that a comparative analysis of material substitution has been made on the Wikispeed car. The results of such work will assist in the lowering of harmful greenhouse gas emissions (GHG) and simultaneously augment fuel economy.
Original language | English |
---|---|
Pages (from-to) | 869-888 |
Journal | Journal of Engineering, Design and Technology |
Volume | 16 |
Issue number | 6 |
Early online date | Oct 2018 |
DOIs | |
Publication status | Published - 2018 |
Keywords
- Greenhouse gas emissions
- Emission reduction
- Lightweight materials