Epitaxial highly ordered Sb:SnO2 nanowires grown by the vapor liquid solid mechanism on m-, r- and a-Al2O3

Matthew Zervos, Nektarios Lathiotakis, Nikolaos Kelaidis, Andreas Othonos, Eugenia Tanasa, Eugeniu Vasile

    Research output: Contribution to journalArticlepeer-review

    6 Citations (Scopus)
    21 Downloads (Pure)

    Abstract

    Epitaxial, highly ordered Sb:SnO2 nanowires were grown by the vapor–liquid–solid mechanism on m-, r- and a-Al2O3 between 700 °C and 1000 °C using metallic Sn and Sb with a mass ratio of Sn/Sb = 0.15 ± 0.05 under a flow of Ar and O2 at 1 ± 0.5 mbar. We find that effective doping and ordering can only be achieved inside this narrow window of growth conditions. The Sb:SnO2 nanowires have the tetragonal rutile crystal structure and are inclined along two mutually perpendicular directions forming a rectangular mesh on m-Al2O3 while those on r-Al2O3 are oriented in one direction. The growth directions do not change by varying the growth temperature between 700 °C and 1000 °C but the carrier density decreased from 8 × 1019 cm−3 to 4 × 1017 cm−3 due to the re-evaporation and limited incorporation of Sb donor impurities in SnO2. The Sb:SnO2 nanowires on r-Al2O3 had an optical transmission of 80% above 800 nm and displayed very long photoluminescence lifetimes of 0.2 ms at 300 K. We show that selective area location growth of highly ordered Sb:SnO2 nanowires is possible by patterning the catalyst which is important for the realization of novel nanoscale devices such as nanowire solar cells.
    Original languageEnglish
    Pages (from-to)1980-1990
    Number of pages11
    JournalNanoscale Advances
    Volume1
    Issue number5
    DOIs
    Publication statusPublished - 9 Apr 2019

    Bibliographical note

    Open Access journal. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence CC BY

    ASJC Scopus subject areas

    • Engineering(all)
    • Bioengineering
    • Atomic and Molecular Physics, and Optics
    • Materials Science(all)
    • Chemistry(all)

    Fingerprint

    Dive into the research topics of 'Epitaxial highly ordered Sb:SnO2 nanowires grown by the vapor liquid solid mechanism on m-, r- and a-Al2O3'. Together they form a unique fingerprint.

    Cite this