Abstract
Molecular beam epitaxy of 2D metal TaSe2/2D MoSe2 (HfSe2) semiconductor heterostructures on epi-AlN(0001)/Si(111) substrates is reported. Electron diffraction reveals an in-plane orientation indicative of van der Waals epitaxy, whereas electronic band imaging supported by first-principles calculations and X-ray photoelectron spectroscopy indicate the presence of a dominant trigonal prismatic 2H-TaSe2 phase and a minor contribution from octahedrally coordinated TaSe2, which is present in TaSe2/AlN and TaSe2/HfSe2/AlN but notably absent in the TaSe2/MoSe2/AlN, indicating superior structural quality of TaSe2 grown on MoSe2. Apart from its structural and chemical compatibility with the selenide semiconductors, TaSe2 has a workfunction of 5.5 eV as measured by ultraviolet photoelectron spectroscopy, which matches very well with the semiconductor workfunctions, implying that epi-TaSe2 can be used for low-resistivity contacts to MoSe2 and HfSe2.
Original language | English |
---|---|
Pages (from-to) | 1836-1841 |
Number of pages | 6 |
Journal | ACS Applied Materials and Interfaces |
Volume | 8 |
Issue number | 3 |
DOIs | |
Publication status | Published - 27 Jan 2016 |
Keywords
- HfSe
- metal/semiconductor contacts
- molecular beam epitaxy
- MoSe
- TaSe
- van der Waals heterostructures
ASJC Scopus subject areas
- General Materials Science