Abstract
We investigate several entanglement-related quantities at finite-temperature criticality in the three-dimensional quantum spherical model, both as a function of temperature T and of the quantum parameter g, which measures the strength of quantum fluctuations. While the von Neumann and the Rényi entropies exhibit a volume-law for any g and T, the mutual information obeys an area law. The prefactors of the volume-law and of the area-law are regular across the transition, reflecting that universal singular terms vanish at the transition. This implies that the mutual information is dominated by nonuniversal contributions. This hampers its use as a witness of criticality, at least in the spherical model. We also study the logarithmic negativity. For any value of g, T, the negativity exhibits an area-law. The negativity vanishes deep in the paramagnetic phase, it is larger at small temperature, and it decreases upon increasing the temperature. For any g, it exhibits the so-called sudden death, i.e. it is exactly zero for large enough T. The vanishing of the negativity defines a 'death line', which we characterise analytically at small g. Importantly, for any finite T the area-law prefactor is regular across the transition, whereas it develops a cusp-like singularity in the limit . Finally, we consider the single-particle entanglement and negativity spectra. The vast majority of the levels are regular across the transition. Only the larger ones exhibit singularities. These are related to the presence of a zero mode, which reflects the symmetry breaking. This implies the presence of sub-leading singular terms in the entanglement entropies. Interestingly, since the larger levels do not contribute to the negativity, sub-leading singular corrections are expected to be suppressed for the negativity.
Original language | English |
---|---|
Article number | 033105 |
Number of pages | 28 |
Journal | J. Stat. Mech. |
Volume | 2020 |
DOIs | |
Publication status | Published - 20 Mar 2020 |
Externally published | Yes |
Bibliographical note
This is the Accepted Manuscript version of an article accepted for publication in Journal of Statistical Mechanics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/1742-5468/ab6b19Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.
Funding
Funders | Funder number |
---|---|
European Horizon 2020 | 743032 |
Keywords
- cond-mat.stat-mech
- cond-mat.quant-gas
- cond-mat.str-el
- hep-th
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Statistics and Probability
- Statistics, Probability and Uncertainty