Projects per year
Abstract
In a world where humanity’s interests come first, the environment is flooded with pollutants produced by humans’ urgent need for expansion. Air pollution and climate change are side effects of humans’ inconsiderate intervention. Particulate matter of 2.5 µm diameter (PM2.5) infiltrates lungs and hearts, causing many respiratory system diseases. Innovation in air pollution prediction is a must to protect the environment and its habitants, including those of humans. For that purpose, an enhanced method for PM2.5 prediction within the next hour is introduced in this research work using nonlinear autoregression with exogenous input (NARX) model hosting a convolutional neural network (CNN) followed by long short-term memory (LSTM) neural networks. The proposed enhancement was evaluated by several metrics such as index of agreement (IA) and normalized root mean square error (NRMSE). The results indicated that the CNN–LSTM/NARX hybrid model has the lowest NRMSE and the best IA, surpassing the state-of-the-art proposed hybrid deep-learning algorithms.
Original language | English |
---|---|
Article number | 4418 |
Number of pages | 31 |
Journal | Sensors |
Volume | 22 |
Issue number | 12 |
DOIs | |
Publication status | Published - 11 Jun 2022 |
Externally published | Yes |
Bibliographical note
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)Funder
The researcher Ahmed Moursi is funded by a full Newton–Mosharafa scholarship from the Ministry of Higher Education of the Arab Republic of Egypt.Keywords
- CNN–LSTM
- NARX neural network
- PM2.5
- air quality prediction
- machine learning
ASJC Scopus subject areas
- Analytical Chemistry
- Information Systems
- Instrumentation
- Atomic and Molecular Physics, and Optics
- Electrical and Electronic Engineering
- Biochemistry
Fingerprint
Dive into the research topics of 'Enhancing PM2.5 Prediction Using NARX-Based Combined CNN and LSTM Hybrid Model'. Together they form a unique fingerprint.Projects
- 1 Finished
-
AI- enabled air quality monitoring system on the edge for more sustainable cities
Djahel, S. (Principal Investigator)
1/10/20 → 30/09/21
Project: Other