Abstract
Energy-saving potential prediction models play a major role in developing retrofit scheme. Reliable estimation and quantification of energy saving of retrofit measures for these models is essential, since it is often used for guiding political decision-makers. The aim of this paper is to provide up-to-date approaches of predicting energy-saving effect for building retrofit in large-scale, including data-driven, physics-based, and hybrid approaches, while throwing light on workflow and key factors in developing models. The review focuses on pointing out pivotal aspects that are not considered in current models of predicting energy-saving effect for building retrofit in large-scale. It is concluded that the validation of proposed models mainly focuses on an aggregated level, which makes it ignore performance gap differences between buildings. The models exist the problem of prebound- and rebound effects due to uncertainty factor. Occupant's willingness to retrofit is ignored in all three categories of models, which can lead to the prediction result deviate from the actual situation in a certain extent. This paper promotes the development of models for predicting energy-saving potential for large-scale buildings, and help to formulate appropriate strategies for the retrofit of existing buildings.
Original language | English |
---|---|
Article number | 111992 |
Number of pages | 14 |
Journal | Renewable and Sustainable Energy Reviews |
Volume | 156 |
Early online date | 17 Dec 2021 |
DOIs | |
Publication status | Published - Mar 2022 |
Bibliographical note
© 2022, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.
This document is the author’s post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.
Keywords
- prediction models
- energy-saving
- Physical-based modelling
- Data-driven models
- Building retrofit