Abstract
The ever increasing of product development and the scarcity of the energy resources that those manufacturing activities heavily rely on have made it of great significance the study on how to improve the energy efficiency in manufacturing environment. Energy consumption sensing and collection enables
the development of effective solutions to higher energy efficiency. Further, it is found that the data on energy consumption of manufacturing machines also contains the information on the conditions of these machines. In this paper, methods of machine anomaly detection based on energy consumption information are developed and applied to cases on our Syil X4 computer numerical control (CNC) milling machine. Further, given massive amount of energy consumption data from large amount machining tasks, the proposed algorithms are being implemented on a Storm and Hadoop based framework aiming at online realtime machine anomaly detection.
Original language | English |
---|---|
Pages | 136 - 142 |
DOIs | |
Publication status | Published - Nov 2014 |
Event | Second International Conference on Advanced Cloud and Big Data (CBD 2014) - Huangshan, China Duration: 20 Nov 2014 → 22 Nov 2014 |
Conference
Conference | Second International Conference on Advanced Cloud and Big Data (CBD 2014) |
---|---|
Country/Territory | China |
City | Huangshan |
Period | 20/11/14 → 22/11/14 |
Bibliographical note
© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.EU Smarter project EU CASES project
Keywords
- anomaly detection
- articifial neurak network
- Hadoopm
- Storm
Fingerprint
Dive into the research topics of 'Energy Consumption Data Based Machine Anomaly Detection'. Together they form a unique fingerprint.Profiles
-
Xiang Fei
- School of Computing, Mathematics and Data Sciences - Assistant Professor Academic
Person: Teaching and Research