TY - UNPB
T1 - Emergence of dissipation and hysteresis from interactions among reversible, non-dissipative units
T2 - The case of fluid-fluid interfaces
AU - Holtzman, Ran
AU - Dentz, Marco
AU - Moura, Marcel
AU - Chubynsky, Mykyta
AU - Planet, Ramon
AU - Ortin, Jordi
PY - 2024/1/23
Y1 - 2024/1/23
N2 - We examine the nonequilibrium nature of two-phase fluid displacements in a quasi-two-dimensional medium (a model open fracture), in the presence of localized constrictions ("defects"), from a theoretical and numerical standpoint. Our analysis predicts the capillary energy dissipated in abrupt interfacial displacements (jumps) across defects, and relates it to the corresponding hysteresis cycle, e.g. in pressure-saturation. We distinguish between "weak" (reversible interface displacement, exhibiting no hysteresis and dissipation) and "strong" (irreversible) defects. We expose the emergence of dissipation and irreversibility caused by spatial interactions, mediated by interfacial tension, among otherwise weak defects. We exemplify this cooperative behavior for a pair of weak defects and establish a critical separation distance, analytically and numerically, verified by a proof-of-concept experiment.
AB - We examine the nonequilibrium nature of two-phase fluid displacements in a quasi-two-dimensional medium (a model open fracture), in the presence of localized constrictions ("defects"), from a theoretical and numerical standpoint. Our analysis predicts the capillary energy dissipated in abrupt interfacial displacements (jumps) across defects, and relates it to the corresponding hysteresis cycle, e.g. in pressure-saturation. We distinguish between "weak" (reversible interface displacement, exhibiting no hysteresis and dissipation) and "strong" (irreversible) defects. We expose the emergence of dissipation and irreversibility caused by spatial interactions, mediated by interfacial tension, among otherwise weak defects. We exemplify this cooperative behavior for a pair of weak defects and establish a critical separation distance, analytically and numerically, verified by a proof-of-concept experiment.
M3 - Preprint
BT - Emergence of dissipation and hysteresis from interactions among reversible, non-dissipative units
PB - arXiv
ER -