Abstract
Silicon-Few Layer Graphene (Si-FLG) composite electrodes are investigated using a scalable electrode manufacturing method. A comprehensive study on the electrochemical performance and the impedance response is measured using electrochemical impedance spectroscopy. The study demonstrates that the incorporation of few-layer graphene (FLG) results in significant improvement in terms of cyclability, electrode resistance and diffusion properties. Additionally, the diffusion impedance responses that occur during the phase changes in silicon is elucidated through Staircase Potentio Electrochemical Impedance Spectroscopy (SPEIS): a more comprehensive and straightforward approach than previous state-of-charge based diffusion studies.
Original language | English |
---|---|
Article number | 1386 |
Number of pages | 9 |
Journal | Scientific Reports |
Volume | 8 |
Issue number | 1 |
DOIs | |
Publication status | Published - 23 Jan 2018 |
Externally published | Yes |
Bibliographical note
CC-BY Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.ASJC Scopus subject areas
- General