Abstract
The paper presents an experimental study aimed at investigating the mechanism responsible for Bisphenol A adsorption on natural cork, and the role played on process kinetics by the organic matter released from the cork. Obtained data show that natural cork has a good affinity toward Bisphenol A, with removal efficiency being as high as 75% in less than 24 h. The adsorption process is characterized by a fast-initial rate which tends to reduce progressively, and follows a pseudo second order model equation. Statistical physics analysis allows for obtaining a molecular description of the adsorption, which is shown to take place through a single anchorage point, perpendicularly to the adsorbent surface. Nuclear magnetic resonance spectroscopy and fluorescence analysis reveal that the colloidal organic matter released from the cork interacts with Bisphenol A; it also plays a relevant role in the slowing down of the adsorption rate, as it competes with cork adsorption sites for Bisphenol A. Organic matter is found to be highly heterogenous, presenting at the same time carbohydrates, aromatic and aliphatic domains. Such moieties interact stably with the contaminant in the solution probably due the establishment of dispersive forces (e.g. π-stacking) which sequestrate Bisphenol A into the inner hydrophobic core of the organic matter three-dimensional structure.
Original language | English |
---|---|
Article number | 118675 |
Journal | Journal of Cleaner Production |
Volume | 244 |
Early online date | 2 Oct 2019 |
DOIs | |
Publication status | Published - 20 Jan 2020 |
Bibliographical note
NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Cleaner Production. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Cleaner Production, 244, (2020) DOI: 10.1016/j.jclepro.2019.118675© 2019, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Keywords
- Adsorption
- Bisphenol a
- Cork
- Emerging contaminant
- Organic matter
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- General Environmental Science
- Strategy and Management
- Industrial and Manufacturing Engineering