Abstract
It was reported that ceria–carbonate composites are promising electrolyte materials for intermediate temperature fuel cells. The conductivity stability of composite electrolyte with co-doped ceria and binary carbonate was measured by AC impedance spectroscopy. At 550 °C, the conductivity dropped from 0.26 to 0.21 S cm−1 in air during the measured 135 h. At a constant current density of 1 A cm−2, the cell performance keeps decreasing at 550 °C, with a maximum power density change from 520 to 300 mW cm−2. This is due to the increase of both series and electrode polarisation resistances. Obvious morphology change of the electrolyte nearby the cathode/electrolyte interface was observed by SEM. Both XRD and FT-IR investigations indicate that there are some interactions between the doped ceria and carbonates. Thermal analysis indicates that the oxide–carbonate composite is quite stable at 550 °C. The durability of this kind of fuel cell is not good during our experiments. A complete solid oxide-carbonate composite would be better choice for a stable fuel cell performance.
Original language | English |
---|---|
Pages (from-to) | 6934-6940 |
Number of pages | 7 |
Journal | International Journal of Hydrogen Energy |
Volume | 35 |
Issue number | 13 |
Early online date | 13 May 2010 |
DOIs | |
Publication status | Published - 1 Jul 2010 |
Keywords
- Intermediate temperature
- Fuel cell
- Durability
- Co-doped ceria
- Composite electrolyte