Abstract
The organo-osmium complex [OsII(ɳ6-p-cym)(PhAzPy-NMe2)I]+ (FY26) exhibits promising in vitro antitumour activity against mouse hepatocarcinoma Hepa1-6 and other mouse or human cancer cell lines. Here, we drastically enhance water solubility of FY26 through the replacement of the PF6- counter-anion with chloride using a novel synthesis method. FY26⋅PF6 and FY26⋅Cl displayed similar in vitro cytotoxicity in two cancer cell models. We then show the moderate and late anticancer efficacy of FY26⋅PF6 and FY26⋅Cl in a subcutaneous murine hepatocarcinoma mouse model. Both efficacy and tolerability varied according to FY26 circadian dosing time in hepatocarcinoma tumour-bearing mice. Tumour and liver uptake of the drug were determined over 48 h following FY26⋅Cl administration at Zeitgeber time 6 (ZT6), when the drug is least toxic (in the middle of the light span when mice are resting). Our studies suggest the need to administer protracted low doses of FY26 at ZT6 in order to optimize its delivery schedule, for example through the use of chrono-releasing nanoparticles.
Original language | English |
---|---|
Article number | mfaa003 |
Number of pages | 11 |
Journal | Metallomics : integrated biometal science |
Volume | 13 |
Issue number | 2 |
Early online date | 11 Dec 2020 |
DOIs | |
Publication status | Published - 2 Feb 2021 |
Externally published | Yes |
Bibliographical note
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Publisher Copyright:
© The Author(s) 2020. Published by Oxford University Press.
ASJC Scopus subject areas
- Metals and Alloys
- Chemistry (miscellaneous)
- Biophysics
- Biochemistry
- Biomaterials