TY - JOUR
T1 - Discrete gait characteristics are associated with m.3243A>G and m.8344A>G variants of mitochondrial disease and its pathological consequences
AU - Galna, B
AU - Newman, J
AU - Jakovljevic, DG
AU - Bates, MG
AU - Schaefer, AM
AU - McFarland, R
AU - Turnbull, DM
AU - Trenell, MI
AU - Gorman, GS
AU - Rochester, L
N1 - Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
PY - 2014/1
Y1 - 2014/1
N2 - Mitochondrial disease is complex and variable, making diagnosis and management challenging. The situation is complicated by lack of sensitive outcomes of disease severity, progression, contributing pathology and clinical efficacy. Gait is emerging as a sensitive marker of pathology; however, to date, no studies have quantified gait in mitochondrial disease. In this cross-sectional study, we quantified gait characteristics in 24 patients with genetically confirmed mitochondrial disease (m.3243A>G and m.8344A>G) and 24 controls. Gait was measured using an instrumented walkway according to a predefined model with five domains hypothesised to reflect independent features of the neural control of gait in mitochondrial disease, including: pace (step velocity and step length); rhythm (step time); variability (step length and step time variability); asymmetry (step time asymmetry); and postural stability (step width, step width variability and step length asymmetry). Gait characteristics were compared with respect to controls and genotype. Additional measures of disease severity, pathophysiology and imaging were also compared to gait to verify the validity of gait characteristics. Discrete gait characteristics differed between controls and mitochondrial disease groups, even in relatively mildly affected patients harbouring the m.3243A>G mutation. The pattern of gait impairment (increased variability and reduced postural control) was supported by significant associations with measures of disease severity, progression, pathophysiology and radiological evidence of cerebellar atrophy. Discrete gait characteristics may help describe functional deficits in mitochondrial disease, enhance measures of disease severity and pathology, and could be used to document treatment effects of novel therapies.
AB - Mitochondrial disease is complex and variable, making diagnosis and management challenging. The situation is complicated by lack of sensitive outcomes of disease severity, progression, contributing pathology and clinical efficacy. Gait is emerging as a sensitive marker of pathology; however, to date, no studies have quantified gait in mitochondrial disease. In this cross-sectional study, we quantified gait characteristics in 24 patients with genetically confirmed mitochondrial disease (m.3243A>G and m.8344A>G) and 24 controls. Gait was measured using an instrumented walkway according to a predefined model with five domains hypothesised to reflect independent features of the neural control of gait in mitochondrial disease, including: pace (step velocity and step length); rhythm (step time); variability (step length and step time variability); asymmetry (step time asymmetry); and postural stability (step width, step width variability and step length asymmetry). Gait characteristics were compared with respect to controls and genotype. Additional measures of disease severity, pathophysiology and imaging were also compared to gait to verify the validity of gait characteristics. Discrete gait characteristics differed between controls and mitochondrial disease groups, even in relatively mildly affected patients harbouring the m.3243A>G mutation. The pattern of gait impairment (increased variability and reduced postural control) was supported by significant associations with measures of disease severity, progression, pathophysiology and radiological evidence of cerebellar atrophy. Discrete gait characteristics may help describe functional deficits in mitochondrial disease, enhance measures of disease severity and pathology, and could be used to document treatment effects of novel therapies.
UR - http://europepmc.org/abstract/med/24150688
U2 - 10.1007/s00415-013-7129-2
DO - 10.1007/s00415-013-7129-2
M3 - Article
C2 - 24150688
SN - 1432-1459
VL - 261
SP - 73
EP - 82
JO - Journal of Neurology
JF - Journal of Neurology
ER -