Direct electrochemical production of Ti-10W alloys from mixed oxide preform precursors

K. Dring, Rohit Bhagat, M. Jackson, R. Dashwood, D. Inman

Research output: Contribution to journalArticlepeer-review

74 Citations (Scopus)


Ti–W alloys were produced via electrochemical reduction of TiO2–WO3 mixed oxide preforms in a pre-electrolysed, molten calcium chloride electrolyte at 1173 K. Electrolysis voltages of 1500–3200 mV were applied for times ranging from 6 to 24 h across a graphite anode and Grade 2 commercial purity (CP) titanium cathodic current collector, which supported the ceramic precursors. Low-oxygen, homogeneous material was subsequently water washed and characterized to determine the level of residual species remaining from the reduction process, such as Cl and Ca. The microstructure (porosity and microchemistry) of the reduced material and microstructural examination of the mixed oxide feedstock (particle morphology, size and chemistry) were characterized using a field emission gun scanning electron microscope (FEG-SEM) with backscattered electron imaging (BSE) and X-ray energy dispersive spectrometry (X-EDS).
Original languageEnglish
Pages (from-to)103-109
Number of pages7
JournalJournal of Alloys and Compounds
Issue number1-2
Early online date7 Feb 2006
Publication statusPublished - 10 Aug 2006


  • Titanium
  • Tungsten
  • Electrochemical reduction


Dive into the research topics of 'Direct electrochemical production of Ti-10W alloys from mixed oxide preform precursors'. Together they form a unique fingerprint.

Cite this